日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在第二象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x<0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標(biāo)是________.

          (-,3);或(-,)或(-,)或(-2,2
          分析:此題應(yīng)分四種情況考慮:
          ①∠POQ=∠OAH=30°,此時A、P重合,可聯(lián)立直線OA和拋物線的解析式,即可得A點坐標(biāo);
          ②∠POQ=∠AOH=60°,此時∠POH=30°,即直線y=-x,聯(lián)立拋物線的解析式可得P點坐標(biāo),進而可求出OQ、PQ的長,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到點A的坐標(biāo).
          ③當(dāng)∠OPQ=90°,∠POQ=∠AOH=60°時,此時△QOP≌△AOH;
          ④當(dāng)∠OPQ=90°,∠POQ=∠OAH=30°,此時△OQP≌△AOH;
          解答:①當(dāng)∠POQ=∠OAH=30°,若以P,O,Q為頂點的三角形與△AOH全等,那么A、P重合;
          由于∠AOH=60°,
          所以直線y=-x,聯(lián)立拋物線的解析式,
          得:
          解得
          故A(-,3);
          ②當(dāng)∠POQ=∠AOH=60°,此時△POQ≌△AOH;
          易知∠POH=30°,則直線y=-x,聯(lián)立拋物線的解析式,
          得:,
          解得 或;
          故P(-,),那么A(-,);
          ③當(dāng)∠OPQ=90°,∠POQ=∠AOH=60°時,此時△QOP≌△AOH;
          易知∠POH=30°,則直線y=-x,聯(lián)立拋物線的解析式,
          得:,
          解得
          故P(-,),
          ∴OP=,QP=
          ∴OH=OP=,AH=QP=,
          故A(-,);
          ④當(dāng)∠OPQ=90°,∠POQ=∠OAH=30°,此時△OQP≌△AOH;
          此時直線y=-x,聯(lián)立拋物線的解析式,
          得:
          解得
          ∴P(-,3);
          ∴QP=2,OP=2,
          ∴OH=QP=2,AH=OP=2,
          故A(-2,2).
          綜上可知:符合條件的點A有四個,則符合條件的點A的坐標(biāo)是(-,3);或(-,)或(-,)或(-2,2).
          故答案為:(-,3);或(-,)或(-,)或(-2,2
          點評:此題主要考查的是全等三角形的判定和性質(zhì)以及函數(shù)圖象交點坐標(biāo)的求法;由于全等三角形的對應(yīng)頂點不明確,因此要注意分類討論思想的運用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系xOy中,直線y=
          1
          2
          x+2與x軸,y軸分別交于A,B兩點,以AB為邊在第二精英家教網(wǎng)象限內(nèi)作矩形ABCD,使AD=
          5

          (1)求點A,點B的坐標(biāo),并求邊AB的長;
          (2)過點D作DH⊥x軸,垂足為H,求證:△ADH∽△BAO;
          (3)求點D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•安慶二模)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-4,1),點B的坐標(biāo)為(-2,1).
          (1)請以A、B、C為頂點畫四邊形,且四邊形為中心對稱圖形(只需畫一個即可),并寫出頂點D的坐標(biāo).
          (2)以原點O為位似中心,位似比為2,在第二象限內(nèi)作△ABC的位似圖形△A1B1C1,并寫出C1的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在第二象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x<0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標(biāo)是
          (-
          3
          ,3);或(-
          1
          3
          ,
          3
          3
          )或(-
          2
          3
          ,
          2
          3
          3
          )或(-2,2
          3
          (-
          3
          ,3);或(-
          1
          3
          ,
          3
          3
          )或(-
          2
          3
          2
          3
          3
          )或(-2,2
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省衢州市江山二中九年級(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

          如圖,在第二象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x<0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標(biāo)是   

          查看答案和解析>>

          同步練習(xí)冊答案