【題目】關(guān)于拋物線與直線
在同一直角坐標(biāo)系的圖象,其中不正確的是( )
A.B.
C.D.
【答案】D
【解析】
根據(jù)一次函數(shù)的圖象和二次函數(shù)的圖象解答即可.
A、y1=x2+k 中a=1>0,開口向上,頂點坐標(biāo)為(0,k),其圖象與y軸的正半軸相交,故k>0, 因此,直線經(jīng)過一、二、三象限,故選項A正確,不符合題意;
B、y1=x2+k 中a=1>0,開口向上,頂點坐標(biāo)為(0,k),其圖象與y軸的負(fù)半軸相交,故k<0, 因此,直線經(jīng)過一、二、四象限,故選項B正確,不符合題意;
C、y1=x2+k 中a=1>0,開口向上,頂點坐標(biāo)為(0,k),其圖象與y軸的負(fù)半軸相交,故k<0, 因此,直線經(jīng)過一、二、四象限,故選項C正確,不符合題意;
D、y1=x2+k 中a=1>0,開口向上,頂點坐標(biāo)為(0,k),其圖象與y軸的正半軸相交,故k>0, 因此,直線經(jīng)過一、二、三象限,直線與y軸交點為(0,1)拋物線交點為(0,k)所以k<1,夾角小于45度,故D不正確,符合題意;
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)若AB=5,BC=4,OA=1,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD,∠EAF=45°,
(1)如圖1,當(dāng)點E,F分別在邊BC,CD上,連接EF,求證:EF=BE+DF;
(2)如圖2,點M,N分別在邊AB,CD上,且BN=DM,當(dāng)點E,F分別在BM,DN上,連接EF,請?zhí)骄烤段EF,BE,DF之間滿足的數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點E,F分別在對角線BD,邊CD上,若FC=2,則BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點的坐標(biāo)分別為(2,0),(0,2),⊙C的圓心坐標(biāo)為(-1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于點E ,則△ABE面積的最小值是 _____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AB為直徑作半圓.點D在弧上(不與A,C重合),點E在AB上,且點D.E關(guān)于AC對稱. 給出下列結(jié)論:①若∠ACE=20°,則∠BAC=25°;②若BC=3,AC=4,則
;給出下列判斷,正確的是( )
A.①②都對B.①②都錯C.①對②錯D.①錯②對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)在一個不透明的袋中裝有3 個完全相同的小球,上面分別標(biāo)號為1、2、3,從中隨機摸出兩個小球,并用球上的數(shù)字組成一個兩位數(shù).
(1)求組成的兩位數(shù)是奇數(shù)的概率;
(2)小明和小華做游戲,規(guī)則是:若組成的兩位數(shù)是4的倍數(shù),小明得3分,否則小華得3分,你認(rèn)為該游戲公平嗎?說明理由;若不公平,請修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為“和諧分式”.如: ,則
是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是_____(填序號);
①;②
;③
;④
;
(2)將“和諧分式”化成一個整式與一個分子為常數(shù)的分式的和的形式為:
=_______(要寫出變形過程);
(3)應(yīng)用:先化簡,并求x取什么整數(shù)時,該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點C、A、A′,求此拋物線的解析式;
(2)點M時第一象限內(nèi)拋物線上的一動點,問:當(dāng)點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標(biāo);
(3)若P為拋物線上一動點,N為x軸上的一動點,點Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時,求點P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0,a、b、c為常數(shù))上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x | …… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | …… |
y | …… | 4 | 4 | m | 0 | …… |
則下列結(jié)論中:①拋物線的對稱軸為直線x=﹣1;②m=;③當(dāng)﹣4<x<2時,y<0;④方程ax2+bx+c﹣4=0的兩根分別是x1=﹣2,x2=0,其中正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com