日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,圓O的弦AB垂直平分半徑OC,則四邊形OACB一定是( )

          A.正方形
          B.長方形
          C.菱形
          D.梯形
          【答案】分析:先根據(jù)垂徑定理得出AD=BD,AC=BC,再根據(jù)全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出結(jié)論.
          解答:解:∵弦AB垂直平分半徑OC,
          ∴AD=BD,AC=BC,OD=CD,
          ∵在△AOD與△BCD中,,
          ∴△AOD≌△BCD,
          ∴OA=BC,
          ∴OA=OB=BC=AC,
          ∴四邊形OACB是菱形.
          故選C.
          點評:本題考查的是垂徑定理及菱形的判定定理,全等三角形的判定與性質(zhì)等知識,熟知“平分弦的直徑平分這條弦,并且平分弦所對的兩條弧”是解答此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          16、如圖,已知AB為⊙O的弦,M為AB的中點,P為⊙O上任意一點,以點P為圓心、2MO為半徑作圓并交⊙O于點C、D,AC、BD交于點Q,請問:
          (1)點Q是△PAB的什么“心”?
          (2)點Q是否在⊙P上?試證明你的結(jié)論.
          提示:(1)三角形的三條高線交于一點,稱為垂心定理,此點稱為垂心.
          (2)三角形有內(nèi)心、外心、重心、垂心等.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、小明學(xué)習(xí)了垂徑定理,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
          (1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點,直線CD⊥AB于點E,則AE=BE.請證明此結(jié)論;
          (2)從圓上任意一點出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點,直線CD⊥PA于點E,則AE=PE+PB.可以通過延長DB、AP相交于點F,再連接AD證明結(jié)論成立.請寫出證明過程;
          (3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點,直線CD⊥PA于點E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫出結(jié)論,不必證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
          解:如圖所示,過O作OM⊥AB,
          ∵AB∥CD,∴ON⊥CD.
          在Rt△BMO中,BO=25cm.
          由垂徑定理得BM=
          1
          2
          AB=
          1
          2
          ×40=20cm,
          ∴OM=
          OB2-BM2
          =
          252-202
          =15cm.
          同理可求ON=
          OC2-CN2
          =
          252-242
          =7cm,
          所以MN=OM-ON=15-7=8cm.
          以上解答有無漏解,漏了什么解,請補上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
          解:如圖所示,過O作OM⊥AB,
          ∵AB∥CD,∴ON⊥CD.
          在Rt△BMO中,BO=25cm.
          由垂徑定理得BM=數(shù)學(xué)公式AB=數(shù)學(xué)公式×40=20cm,
          ∴OM=數(shù)學(xué)公式=15cm.
          同理可求ON=數(shù)學(xué)公式=7cm,
          所以MN=OM-ON=15-7=8cm.
          以上解答有無漏解,漏了什么解,請補上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:《24.1.1 圓及垂徑定理》2009年同步練習(xí)(解析版) 題型:解答題

          在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
          解:如圖所示,過O作OM⊥AB,
          ∵AB∥CD,∴ON⊥CD.
          在Rt△BMO中,BO=25cm.
          由垂徑定理得BM=AB=×40=20cm,
          ∴OM==15cm.
          同理可求ON==7cm,
          所以MN=OM-ON=15-7=8cm.
          以上解答有無漏解,漏了什么解,請補上.

          查看答案和解析>>

          同步練習(xí)冊答案