解答:解:(1)設(shè)拋物線(xiàn)的解析式為y=a(x-1)
2+4,
把(0,3)代入,得,a+4=3,
解得,a=-1,
所以,函數(shù)的解析式為,y=-(x-1)
2+4,
即:y=-x
2+2x+3,
在y=-x
2+2x+3中,令y=0,則-x
2+2x+3=0,
解得,x=-1或3,
所以,B點(diǎn)的坐標(biāo)是(-1,0);
(2)①∵y=-(x-1)
2+4,
∴拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,
∵點(diǎn)Q的速度為每秒1個(gè)單位,點(diǎn)R的速度為每秒2個(gè)單位,
∴AQ=t+1,OR=2t,

∵點(diǎn)P在拋物線(xiàn)上,PQ∥y軸,
∴PQ=3-[(-(t+1)
2+2(t+1)+3]=(t+1)
2-2(t+1),
若AQ和AO是對(duì)應(yīng)邊,∵△AQP∽△AOR,
∴
=
,
即
=
,
解得t=3,
若AQ和OR是對(duì)應(yīng)邊,∵△AQP∽△ROA,
∴
=
,
即
=
,
整理得,2t
2-2t-3=0,
解得t
1=
,t
2=
(舍去),
綜上所述,t=
或3時(shí),以A、P、Q為頂點(diǎn)的三角形與△AOR相似;
②當(dāng)點(diǎn)P在x軸上即點(diǎn)P與點(diǎn)C重合時(shí),PR∥AQ,四邊形APRQ是梯形,
∵點(diǎn)C的坐標(biāo)為(3,0),
∴AQ=t+1=3,
解得t=2,
∴AQ=2+1=3,PR=OR-OP=2×2-3=1,
S
梯形AQRP=
(3+1)×3=6;
AP∥QR時(shí),∠APQ=∠PQR,
設(shè)PQ與x軸相交于D,
又∵∠AQP=∠RDQ=90°,
∴△APQ∽△RQD,
∵AQ=t+1,RD=OR-OD=2t-(t+1)=t-1,

PQ=(t+1)
2-2(t+1),
∴
=
,
即
=
,
整理得,(t-1)
2=3,
解得t=1+
或t=1-
(舍去),
此時(shí),PQ=(1+
+1)
2-2(1+
+1)=2
+3,
AQ=1+
+1=2+
,
RD=1+
-1=
,
梯形的面積=S
△APQ+S
△PQR,
=
×(2+
)×(2
+3)+
×(2
+3)×
,
=
×(2
+3)×(2+
+
),
=(2
+3)×(1+
),
=2
+6+3+3
,
=9+5
.
綜上所述,t=2時(shí),以點(diǎn)A、P、R、Q為頂點(diǎn)的四邊形是梯形,面積是6,
t=1+
時(shí),以點(diǎn)A、P、R、Q為頂點(diǎn)的四邊形是梯形,面積是9+5
.