日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:拋物線y=ax2+bx與x鈾的一個(gè)交點(diǎn)為B,頂點(diǎn)A在直線y=
          3
          x上,O為坐標(biāo)原點(diǎn).
          (1)證明:△OAB為等邊三角形;
          (2)若△OAB的內(nèi)切圓半徑為1,求出拋物線的解析式;
          (3)在拋物線上是否存在點(diǎn)P,使△POB是直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
          分析:(1)根據(jù)直線OA的斜率不難得到∠AOB=60°,根據(jù)拋物線的對稱性可知AB=OA,由此得證.
          (2)由于拋物線的開口方向不確定,因此分a>0和a<0兩種情況求解.以a<0為例說明:
          可設(shè)三角形AOB的內(nèi)心為I,過A作AC⊥OB,則I必在AC上,連接IO,在構(gòu)建的直角三角形IOC中,∠IOC=30°,已知了IC=1,即可求出OC和IO的長,也就能求出B點(diǎn)和A點(diǎn)的坐標(biāo),然后將這兩點(diǎn)坐標(biāo)代入拋物線中即可求出二次函數(shù)的解析式.(a>0時(shí),解法完全相同).
          (3)如果△POB是直角三角形,那么如果過P作x軸的垂線,根據(jù)射影定理即可得出P點(diǎn)縱坐標(biāo)絕對值的平方等于P點(diǎn)橫坐標(biāo)絕對值和P、B兩點(diǎn)橫坐標(biāo)差的絕對值的乘積.然后聯(lián)立拋物線的解析式即可求出P點(diǎn)坐標(biāo).
          解答:精英家教網(wǎng)(1)證明:作AC⊥OB于點(diǎn)C;
          ∵點(diǎn)A在直線y=
          3
          x上,設(shè)A(x,
          3
          x).
          在直角三角形OAC中,tan∠AOC=
          AC
          OC
          =
          3
          |x|
          |x|
          =
          3
          ,
          ∴∠AOC=60°
          由拋物線的對稱性可知:OA=AB,
          ∴△AOB為等邊三角形.

          (2)解:當(dāng)a<0時(shí),設(shè)△AOB的內(nèi)心為I,則∠IOC=30°,在直角三角形IOC中,
          ∵IC=1,OC=
          3

          ∴拋物線的對稱軸x=-
          b
          2a
          =
          3
          ,
          ∴a=-1,b=2
          3

          ∴拋物線的解析式為y=-x2+2
          3
          x.
          當(dāng)a>0時(shí),同法可求,另一條拋物線的解析式為y=x2+2
          3
          x.

          (3)解:易知:拋物線與x軸的兩交點(diǎn)為O(0,0),B(-
          b
          a
          ,0).
          且頂點(diǎn)A(-
          b
          2a
          ,-
          b2
          4a
          )在直線y=
          3
          x上,
          ∴-
          b2
          4a
          =
          3
          (-
          b
          2a
          ),
          解得b=2
          3
          ,b=0(舍去).
          ∴B(-
          2
          3
          a
          ,0)
          拋物線的解析式為y=ax2+2
          3
          x.
          假設(shè)存在符合條件的點(diǎn)P(m,n).
          過點(diǎn)P做PD⊥OB于D,則根據(jù)射影定理有:精英家教網(wǎng)
          PD2=OD•BD;
          由題意知:y=ax2+2
          3
          x,
          n2=m(-
          2
          3
          a
          -m)
          n=am2+2
          3
          m
          ,
          解得:
          m=
          -
          3
          +
          2
          a
          n=-
          1
          a

          m=
          -
          3
          -
          2
          a
          n=-
          1
          a
          ,
          ∴存在符合條件的P點(diǎn),且坐標(biāo)為:P(
          -
          3
          +
          2
          a
          ,-
          1
          a
          )或(
          -
          3
          -
          2
          a
          ,-
          1
          a
          ).
          點(diǎn)評:本題是二次函數(shù)綜合題,考查了等邊三角形的判定、二次函數(shù)解析式的確定、三角形內(nèi)心等知識(shí)點(diǎn).綜合性強(qiáng),難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:拋物線y=x2-(a+b)x+
          c2
          4
          ,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為
          3
          ,拋物線與x軸交于點(diǎn)P、Q,問是否精英家教網(wǎng)存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
          (1)求證:拋物線與直線一定有兩個(gè)不同的交點(diǎn);
          (2)設(shè)拋物線與直線的兩個(gè)交點(diǎn)為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
          c
          a
          ,試問:是否存在實(shí)數(shù)k,使線段A1B1的長為4
          2
          .如果存在,求出k的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點(diǎn)P,如圖所示.
          (1)頂點(diǎn)P的坐標(biāo)是
          (-1,4)
          (-1,4)
          ;
          (2)若直線y=ax+b經(jīng)過另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
          (3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:拋物線數(shù)學(xué)公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學(xué)公式,拋物線與x軸交于點(diǎn)P、Q,問是否存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年四川省綿陽市南山中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

          已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點(diǎn)P、Q,問是否存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案