日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABBC,射線CMBC,且BC5,AB1,點(diǎn)P是線段BC (不與點(diǎn)B、C重合)上的動點(diǎn),過點(diǎn)PDPAP交射線CM于點(diǎn)D,連結(jié)AD

          1)如圖1,當(dāng)BP   時,△ADP是等腰直角三角形.(請直接寫出答案)

          2)如圖2,若DP平分∠ADC,試猜測PBPC的數(shù)量關(guān)系,并加以證明.

          3)若△PDC是等腰三角形,作點(diǎn)B關(guān)于AP的對稱點(diǎn)B′,連結(jié)B′D,請畫出圖形,并求線段B′D的長度.(參考定理:若直角△ABC中,∠C是直角,則BC2+AC2AB2

          【答案】14;

          2PBPC的數(shù)量關(guān)系:PBPC,證明見解析;

          3)線段B′D的長度為5

          【解析】

          1)若△ADP是等腰直角三角形.則APDP,必須要求△APB≌△PDC,則,所以BP4;

          (2)延長線段APDC交于點(diǎn)E,則△DPA≌△DPE,PAPE,進(jìn)一步可證明△APB≌△EPC,則PBPC;

          3)先按要求作出圖形,然后將B′D放在直角三角形中,利用勾股定理求出B′D的長度.

          解:(1)當(dāng)BP4時,CPBCBP541,

          AB1,

          ABPC,

          ABBC,DPAP,CMBC

          ∴∠B=∠C90°,∠APB+DPC90°=∠PDC+DPC,

          ∴∠APB=∠PDC

          在△APB和△PDC中,

          ∴△APB≌△PDCAAS),

          APDP,

          又∵∠APD90°,

          ∴△ADP是等腰直角三角形,

          故答案為:4;

          (2)PBPC的數(shù)量關(guān)系:PBPC,

          證明:如圖2,延長線段APDC交于點(diǎn)E,

          DP平分∠ADC,

          ∴∠ADP=∠EDP

          DPAP,

          ∴∠DPA=∠DPE90°

          在△DPA和△DPE中,

          ∴△DPA≌△DPEASA),

          PAPE

          ABBPCMCP,

          ∴∠ABP=∠ECP90°

          在△APB和△EPC中,

          ∴△APB≌△EPCAAS),

          PBPC;

          3)如圖,連接B'P,過點(diǎn)B'B'FCDF,則∠B'FC=∠C90°,

          ∵△PDC是等腰三角形,

          ∴△PCD為等腰直角三角形,即∠DPC45°,

          又∵DPAP,

          ∴∠APB45°

          ∵點(diǎn)B關(guān)于AP的對稱點(diǎn)為點(diǎn)B′,

          ∴∠BPB'90°,∠APB45°BPB'P

          ∴△ABP為等腰直角三角形,四邊形B'PCF是矩形,

          BPAB1B'P,PC514B'F,CFB'P1,

          B'F4,DF413

          RtB'FD中,B'D 5,

          故線段B′D的長度為5

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA=6,點(diǎn)D是射線OM上的動點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時,將△ACD繞點(diǎn)C逆時針方向旋轉(zhuǎn)60°得到△BCE,連接DE.

          (1)如圖1,猜想:△CDE的形狀是   三角形.

          (2)請證明(1)中的猜想

          (3)設(shè)OD=m,

          當(dāng)6<m<10時,△BDE的周長是否存在最小值?若存在,求出△BDE周長的最小值;若不存在,請說明理由.

          是否存在m的值,使△DEB是直角三角形,若存在,請直接寫出m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】等邊三角形ABC的邊長為4 cm,點(diǎn)D從點(diǎn)C出發(fā)沿CA向點(diǎn)A運(yùn)動,點(diǎn)E從點(diǎn)B出發(fā)沿AB的延長線BF向右運(yùn)動,已知點(diǎn)D,E都以每秒 cm的速度同時開始運(yùn)動,運(yùn)動過程中DEBC相交于點(diǎn)P.

          (1).當(dāng)點(diǎn)DE運(yùn)動多少秒后,△ADE為直角三角形?

          (2)在點(diǎn)D,E運(yùn)動時,線段PD與線段PE相等嗎?如果相等,予以證明;如不相等,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ABCD,∠ECF=∠BCD90°,CECF5BC7,BD平分∠ABC,EBCD內(nèi)一點(diǎn),F是四邊形ABCD外一點(diǎn).(E可以在BCD的邊上)

          1)求證:DCBC;

          2)當(dāng)∠BEC135°,設(shè)BEa,DEb,求ab滿足的關(guān)系式;

          3)當(dāng)E落在線段BD上時,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B

          1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫做法)

          ①在射線BM上作一點(diǎn)C,使ACAB,連接AC

          ②作∠ABM的角平分線交AC于點(diǎn)D

          ③在射線CM上作一點(diǎn)E,使CECD,連接DE

          2)在(1)中所作的圖形中,通過觀察和測量可以發(fā)現(xiàn)BDDE,請將下面的證明過程補(bǔ)充完整證明:∵ACAB,

          ∴∠   =∠   

          BD平分∠ABM,

          ∴∠DBE=﹣   

          CECD

          ∴∠CDE=∠CED

          ∴∠ACB=∠CDE+CED

          ∴∠CEDACB

          ∴∠DBE=∠CED,

          BDDE,(   ).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC8米,∠BCD=135°,通道斜面CD的長為6米,通道斜面AB的坡度i=1:

          (1)求通道斜面AB的長;

          (2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時BE的長.

          (答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

          (1)請畫出ABC關(guān)于y軸對稱的A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點(diǎn),不寫畫法);

          (2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′(   ),B′(   ),C′(   

          (3)計(jì)算ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

          (1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD

          (2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某足球運(yùn)動員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5mA處正對球門踢出(點(diǎn)Ay軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.

          (1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?

          (2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?

          查看答案和解析>>

          同步練習(xí)冊答案