日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,兩個邊長相等的正方形ABCD和OEFG,若將正方形OEFG繞點O按逆時針方向旋轉150°,則兩個正方形的重疊部分四邊形OMCN的面積( 。
          分析:根據(jù)正方形性質得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根據(jù)ASA證△BOM≌△CON,推出兩個正方形的重疊部分四邊形OMCN的面積等于S△BOC=
          1
          4
          S正方形ABCD,即可得出選項.
          解答:解:∵四邊形ABCD、四邊形PEFG是兩個邊長相等正方形,
          ∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,
          ∴∠BOC-∠COM=∠EOG-∠COM,
          即∠BOM=∠CON,
          ∵在△BOM和△CON中
          ∠BOM=∠CON
          OB=OC
          ∠OBM=∠OCN
          ,
          ∴△BOM≌△CON,
          ∴兩個正方形的重疊部分四邊形OMCN的面積是S△COM+S△CNO=S△COM+S△BOM=S△BOC=
          1
          4
          S正方形ABCD,
          即不管怎樣移動,陰影部分的面積都等于
          1
          4
          S正方形ABCD,
          故選A.
          點評:BO本題考查了正方形性質和全等三角形的性質和判定的應用,關鍵是求出△BOM≌△CON,即△BOM得面積等于△CON的面積.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2012•紹興)聯(lián)想三角形外心的概念,我們可引入如下概念.
          定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.
          舉例:如圖1,若PA=PB,則點P為△ABC的準外心.
          應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=
          12
          AB,求∠APB的度數(shù).
          探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          三角形外心我們可以理解為:到三角形三個頂點距離相等的點稱三角形的外心,由此,我們定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.
          舉例:如圖1,若PA=PB,則點P為△ABC的準外心.
          (1)應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=
          12
          AB,求∠APB的度數(shù).
          (2)探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          用兩個邊長為的全等的等邊拼成一個四邊形,把一個含角的直角三角尺與此四邊形重合,使三角尺的角的頂點與點重合,兩邊分別與、重合. 將三角尺繞點按逆時針方向旋轉(旋轉角小于).

          (1)當三角尺的兩邊分別與四邊形的兩邊相交于點、時,如圖(1),①求證:1).∠BAE=∠CAF,2).;②重疊部分(四邊形)的面積為   

          (2)當三角尺的兩邊分別與四邊形的兩邊、的延長線相交于點、時,如圖(2),①還相等嗎?說明理由;

          ②重疊部分的面積    (填“改變”或“不變”)

          (3)若重疊部分面積保持不變,則旋轉角的取值范圍是   

           


          查看答案和解析>>

          同步練習冊答案