日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•茂名)如圖,某學習小組為了測量河對岸塔AB的高度,在塔底部B的正對岸點C處測得塔頂仰角∠ACB=30°.
          (1)若河寬BC是60米,求塔AB的高;(精確到0.1米;參考數(shù)據(jù):≈1.414,≈1.732)
          (2)若河寬BC無法度量.則應(yīng)如何測量塔AB的高度呢小明想出了另外一種方法:從點C出發(fā),沿河岸CD的方向(點B、C、D在同一平面內(nèi),且CD⊥BC)走a米到達D處,測得∠BDC=60°,這樣就可以求得塔AB的高度了.請你用這種方法求出塔AB的高.

          【答案】分析:根據(jù)題意構(gòu)造直角三角形;本題涉及多個直角三角形,應(yīng)利用其公共邊構(gòu)造相應(yīng)的關(guān)系,進而可求出答案.
          解答:解:(1)在Rt△ABC中,∠ACB=30°,BC=60.
          ∴AB=BC•tan∠ACB=60×=20≈34.6(米);
          所以,塔AB的高約是34.6米.

          (2)在Rt△BCD中,∠BDC=60°,CD=a.
          ∴BC=CD•tan∠BDC=a.
          又在Rt△ABC中,AB=BC•tan∠ACB==a(米).
          所以,塔AB的高為a米.
          點評:本題要求學生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2008•茂名)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點,且x2-x1=5.
          (1)求b、c的值;
          (2)在拋物線上求一點D,使得四邊形BDCE是以BC為對角線的菱形;
          (3)在拋物線上是否存在一點P,使得四邊形BPOH是以O(shè)B為對角線的菱形?若存在,求出點P的坐標,并判斷這個菱形是否為正方形;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年河南省中招模擬試卷(解析版) 題型:解答題

          (2008•茂名)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點,且x2-x1=5.
          (1)求b、c的值;
          (2)在拋物線上求一點D,使得四邊形BDCE是以BC為對角線的菱形;
          (3)在拋物線上是否存在一點P,使得四邊形BPOH是以O(shè)B為對角線的菱形?若存在,求出點P的坐標,并判斷這個菱形是否為正方形;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2008年廣東省茂名市中考數(shù)學試卷(解析版) 題型:解答題

          (2008•茂名)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點,且x2-x1=5.
          (1)求b、c的值;
          (2)在拋物線上求一點D,使得四邊形BDCE是以BC為對角線的菱形;
          (3)在拋物線上是否存在一點P,使得四邊形BPOH是以O(shè)B為對角線的菱形?若存在,求出點P的坐標,并判斷這個菱形是否為正方形;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

          (2008•茂名)如圖,點A、B、C在⊙O上,AO∥BC,∠AOB=50°,則∠OAC的度數(shù)是    度.

          查看答案和解析>>

          同步練習冊答案