日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知正方形的對角線,相交于點

          (1)如圖1,,分別是,上的點,的延長線相交于點.若,求證:;

          (2)如圖2,上的點,過點,交線段于點,連結(jié)于點,交于點.若

          求證:;

          當(dāng)時,求的長.

          【答案】(1)證明見解析(2)證明見解析

          【解析】

          試題分析:(1)根據(jù)正方形的性質(zhì),可根據(jù)三角形全等的判定(ASA)與性質(zhì)求證即可;

          (2)同(1)中,利用上面的結(jié)論,根據(jù)SAS可證的結(jié)論;

          設(shè)CH=x,然后根據(jù)正方形的性質(zhì)和相似三角形的判定與性質(zhì)可得然后列方程求解即可.

          試題解析:(1)證明:四邊形ABCD是正方形

          ∴AC⊥BD,OD=OC

          ∴∠DOG=∠COE=90°

          ∴∠OEC+∠OCE=90°

          ∵DF⊥CE

          ∴∠OEC+∠ODG=90°

          ∴∠ODG=∠OCE

          ∴△DOG≌△COE(ASA)

          ∴OE=OG

          (2)證明:OD=OC,∠DOG=∠COE=90°

          OE=OG

          ∴△DOG≌△COE(SAS

          ∴∠ODG=∠OCE

          ②解設(shè)CH=x,

          ∵四邊形ABCD是正方形,AB=1

          ∴BH=1-x

          ∠DBC=∠BDC=∠ACB=45°

          ∵EH⊥BC

          ∴∠BEH=∠EBH=45°

          ∴EH=BH=1-x

          ∵∠ODG=∠OCE

          ∴∠BDC-∠ODG=∠ACB-∠OCE

          ∴∠HDC=∠ECH

          ∵EH⊥BC

          ∴∠EHC=∠HCD=90°

          ∴△CHE∽△DCH

          ∴HC2=EH·CD

          得x2+x-1=0

          解得,(舍去)

          ∴HC=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】【探究函數(shù)y=x+的圖象與性質(zhì)】

          (1)函數(shù)y=x+的自變量x的取值范圍是 ;

          (2)下列四個函數(shù)圖象中函數(shù)y=x+的圖象大致是 ;

          (3)對于函數(shù)y=x+,求當(dāng)x>0時,y的取值范圍.

          請將下列的求解過程補充完整.

          解:x>0

          y=x+=(2+(2=(2+

          2≥0

          y≥

          [拓展運用]

          (4)若函數(shù)y=,則y的取值范圍

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分別以AB、BC為邊作等邊三角形ABE和等邊三角形BCD,連結(jié)CE,如圖1所示.

          (1)直接寫出∠ABD的大小(用含α的式子表示);
          (2)判斷DC與CE的位置關(guān)系,并加以證明;
          (3)在(2)的條件下,連結(jié)DE,如圖2,若∠DEC=45°,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知,兩點的坐標(biāo)分別為,是線段上一點(與,點不重合),拋物線)經(jīng)過點,,頂點為,拋物線)經(jīng)過點,,頂點為,的延長線相交于點

          (1)若,求拋物線,的解析式;

          (2)若,,求的值;

          (3)是否存在這樣的實數(shù)),無論取何值,直線都不可能互相垂直?若存在,請直接寫出的兩個不同的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點O,點E是AD邊上一點,連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點F,CP交BD于點G,連接PO,若PO∥BC,則四邊形OFPG的面積是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:

          銷售方式

          批發(fā)

          零售

          儲藏后銷售

          售價(元/噸)

          3000

          4500

          5500

          成本(元/噸)

          700

          1000

          1200

          若經(jīng)過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
          (1)求y與x之間的函數(shù)關(guān)系式;
          (2)由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計劃全部售完蒜薹獲得的最大利潤.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知ab,c是三角形的三邊,那么代數(shù)式(a﹣b2﹣c2的值( )

          A. 大于零 B. 小于零 C. 等于零 D. 不能確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,的中線,是線段上一點(不與點重合).于點,,連結(jié)

          (1)如圖1,當(dāng)點重合時,求證:四邊形是平行四邊形;

          (2)如圖2,當(dāng)點不與重合時,(1)中的結(jié)論還成立嗎?請說明理由.

          (3)如圖3,延長于點,若,且

          的度數(shù);

          當(dāng),時,求的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明用30厘米的鐵絲圍成一斜邊等于13厘米的直角三角形,設(shè)該直角三角形一直角邊長x厘米,根據(jù)題意列方程為

          查看答案和解析>>

          同步練習(xí)冊答案