日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線ly軸交于點D.

          (1)求拋物線的函數(shù)表達式;

          (2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且BCGBCD面積相等,求點G的坐標;

          (3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.

          【答案】(1)y=x2﹣5x+5,(2)G(3,﹣1),G().(3)﹣1+

          【解析】

          (1)根據(jù)二次函數(shù)的圖象與系數(shù)的關(guān)系列出方程組解出a,b,c的值即得二次函數(shù)的解析式;

          (2)AM⊥x軸,BN⊥x軸,垂足分別為M,N,可得出B點的坐標即可列出方程組求出一次函數(shù)解析式,再根據(jù)S△BCD=S△BCG列出等式即可求得G;

          (3)根據(jù)題意列出等式求出x的值,則B(k+4,k2+3k+1),再根據(jù)以AB為直徑的圓與x軸只有一個交點,且P為切點,得出O′P⊥x軸,P(,0),根據(jù)△AMP∽△PNB,得出AMBN=PNPM,代入數(shù)值即可求出k的值.

          解:(1)由題意可得,

          解得a=1,b=﹣5,c=5;

          ∴二次函數(shù)的解析式為:y=x2﹣5x+5,

          (2)作AMx軸,BNx軸,垂足分別為M,N,

          MQ=,

          NQ=2,B(,);

          ,

          解得

          ,D(0,),

          同理可求,,

          SBCD=SBCG,

          ∴①DGBC(GBC下方),,

          =x2﹣5x+5,

          解得,,x2=3,

          x>

          x=3,

          G(3,﹣1).

          GBC上方時,直線G2G3DG1關(guān)于BC對稱,

          =

          =x2﹣5x+5,

          解得,

          x>,

          x=,

          G(,),

          綜上所述點G的坐標為G(3,﹣1),G(,).

          (3)由題意可知:k+m=1,

          m=1﹣k,

          yl=kx+1﹣k,

          kx+1﹣k=x2﹣5x+5,

          解得,x1=1,x2=k+4,

          B(k+4,k2+3k+1),

          設(shè)AB中點為O′,

          P點有且只有一個,

          ∴以AB為直徑的圓與x軸只有一個交點,且P為切點,

          O′Px軸,

          PMN的中點,

          P(,0),

          ∵△AMP∽△PNB,

          ,

          AMBN=PNPM,

          1×(k2+3k+1)=(k+4﹣)(),

          k>0,

          k==﹣1+

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】課外興趣小組活動時,老師提出了如下問題:

          如圖,在中,若,,求邊上的中線的取值范圍.

          小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長,使得,再連接(或?qū)?/span>繞點逆時針旋轉(zhuǎn)得到),把、集中在中,利用三角形的三邊關(guān)系可得,則

          [感悟]解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

          解決問題:受到的啟發(fā),請你證明下列命題:如圖,在中,邊上的中點,,于點,于點,連接.求證:,若,探索線段、之間的等量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,直線y=﹣x+4與坐標軸分別相交于AB兩點,在第一象限內(nèi),以線段AB為邊向外作正方形ABCD,過A、C點作直線AC

          1)填空:點A的坐標是   ,正方形ABCD的邊長等于   ;

          2)求直線AC的函數(shù)解析式;

          3)如圖2,有一動點MB出發(fā),以1個單位長度/秒的速度向終點C運動,設(shè)運動的時間為t(秒),連接AM,當t為何值時,則AM平分∠BAC?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在RtABC中,ACB=90°,AC=BC,D為BC中點,CEAD于E,BFAC交CE的延長線于F.

          (1)求證:ACD≌△CBF;

          (2)求證:AB垂直平分DF.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在網(wǎng)格中,每個小正方形的邊長都為1,畫圖請加粗加黑.

          (1)圖中格點的面積為______.

          (2)在圖中建立適當?shù)钠矫嬷苯亲鴺讼,使點,.

          (3)畫出關(guān)于軸對稱的圖形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長線上取一點P,AP為直角邊,點P為直角頂點,在射線CB上方作等腰 Rt, 過點DDECB,垂足為點E

          1 依題意補全圖形;

          2 求證: AC=PE

          3 連接DB,并延長交AC的延長線于點F,用等式表示線段CFAC的數(shù)量關(guān)系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D是邊BC上的動點,連接AD,點C關(guān)于直線AD的對稱點為點E,射線BE與射線AD交于點F.

          1)在圖1中,依題意補全圖形;

          2)記),求的大。唬ㄓ煤的式子表示)

          3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某工廠擬建一座平面圖形為矩形且面積為平方米的三級污水處理池(平面圖如圖所示).由于地形限制,三級污水處理池的長、寬都不能超過米.如果池的外圍墻建造單價為每米元,中間兩條隔墻建造單價為每米元,池底建造單價為每平方米元.(池墻的厚度忽略不計)

          當三級污水處理池的總造價為元時,求池長;

          如果規(guī)定總造價越低就越合算,那么根據(jù)題目提供的信息,以元為總造價來修建三級污水處理池是否最合算?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,是等邊三角形,分別是,的中點,且.上一動點,則的最小值為___________.

          查看答案和解析>>

          同步練習冊答案