日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀材料:∵ax2+bx+c=0(a≠0)有兩根為x1=
          -b+
          b2-4ac
          2a
          x2=
          -b-
          b2-4ac
          2a
          .∴x1+x2=
          -2b
          2a
          =-
          b
          a
          x1x2=
          b2-(b2-4ac)
          4a2
          =
          c
          a
          .綜上得,設(shè)ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
          b
          a
          x1x2=
          c
          a
          .利用此知識解決:
          (1)已知x1,x2是方程x2-x-1=0的兩根,不解方程求下列式子的值:①x12+x22;②(x1+1)(x2+1);
          (2)是否存在實數(shù)m,使關(guān)于x的方程x2+(m+1)x+m+4=0的兩根平方和等于2?若存在,求出滿足條件的m的值;若不存在,說明理由.
          分析:(1)先根據(jù)根與系數(shù)的關(guān)系得出x1+x2,x1x2的值,再對①利用完全平方公式變形,最后把x1+x2,x1x2的值代入計算即可,對②利用多項式乘以多項式展開,再結(jié)合,然后把把x1+x2,x1x2的值代入計算即可;
          (2)先根據(jù)根與系數(shù)的關(guān)系得出a+b,ab的值,再利用完全平方公式對a2+b2變形,再代入a+b,ab的值,進而可求m.
          解答:解:(1)∵x1,x2是方程x2-x-1=0的兩根,
          ∴x1+x2=1,x1x2=-1,
          ∴①x12+x22=(x1+x22-2x1x2=1-2×(-1)=3;
          ②(x1+1)(x2+1)=x1x2+(x1+x2)+1=-1+1+1=1.
          (2)設(shè)方程的兩根是a、b,則
          a+b=-(m+1),ab=m+4,
          a2+b2=(a+b)2-2ab=(m+1)2-2(m+4)=2,
          解得m=±3.
          點評:本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是注意整體代入以及完全平方公式的利用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀材料:∵ax2+bx=c=0(a≠0)有兩根為x1=
          -b+
          b2-4ac
          2a
          x2=
          -b-
          b2-4ac
          2a

          x1+x2=
          -2b
          2a
          =-
          b
          a
          ,x1x2=
          b2-(b2-4ac)
          4a2
          =
          c
          a

          綜上得,設(shè)ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
          b
          a
          ,x1x2=
          c
          a

          利用此知識解決:是否存在實數(shù)m,使關(guān)于x的方程x2+(m+1)x+m+4=0的兩根平方和等于2?若存在,求出滿足條件的m的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          閱讀材料:∵ax2+bx+c=0(a≠0)有兩根為x1=
          -b+
          b2-4ac
          2a
          x2=
          -b-
          b2-4ac
          2a
          .∴x1+x2=
          -2b
          2a
          =-
          b
          a
          ,x1x2=
          b2-(b2-4ac)
          4a2
          =
          c
          a
          .綜上得,設(shè)ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
          b
          a
          ,x1x2=
          c
          a
          .利用此知識解決:已知x1,x2是方程x2-x-1=0的兩根,不解方程求下列式子的值:
          ①x12+x22;                 
          ②(x1+1)(x2+1).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          閱讀材料:∵ax2+bx+c=0(a≠0)有兩根為數(shù)學(xué)公式數(shù)學(xué)公式.∴數(shù)學(xué)公式,數(shù)學(xué)公式.綜上得,設(shè)ax2+bx+c=0(a≠0)的兩根為x1、x2,則有數(shù)學(xué)公式,數(shù)學(xué)公式.利用此知識解決:已知x1,x2是方程x2-x-1=0的兩根,不解方程求下列式子的值:
          ①x12+x22;        
          ②(x1+1)(x2+1).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湘教版九年級(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀材料:∵ax2+bx+c=0(a≠0)有兩根為.∴.綜上得,設(shè)ax2+bx+c=0(a≠0)的兩根為x1、x2,則有,.利用此知識解決:
          (1)已知x1,x2是方程x2-x-1=0的兩根,不解方程求下列式子的值:①x12+x22;②(x1+1)(x2+1);
          (2)是否存在實數(shù)m,使關(guān)于x的方程x2+(m+1)x+m+4=0的兩根平方和等于2?若存在,求出滿足條件的m的值;若不存在,說明理由.

          查看答案和解析>>