日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 23、已知△ABC為正三角形,點(diǎn)M是射線BC上任意一點(diǎn),點(diǎn)N是射線CA上任意一點(diǎn),且BM=CN,直線BN與AM相交于點(diǎn)Q.下面給出了三種情況(如圖①,②,③),先用量角器分別測(cè)量∠BQM的大小,然后猜測(cè)∠BQM是否為定值并利用其中一圖證明你的結(jié)論.
          分析:由等邊三角形ABC的性質(zhì),可知∠ABC=∠C=60°,AB=BC,又已知BM=CN,所以△ABM≌△BCN,有∠BAM=∠CBN,再根據(jù)三角形的外角等于與它不相鄰的兩內(nèi)角之和,即∠BQM為定值.
          解答:解:∠BQM為定值.
          理由:如圖①∵△ABC是等邊三角形,
          ∴∠ABC=∠C=60°,AB=BC
          ∵BM=CN
          ∴△ABM≌△BCN(SAS)
          ∴∠BAM=∠CBN(全等三角形的對(duì)應(yīng)角相等),
          ∴∠BQM=∠BAQ+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°
          即∠BQM為定值.
          圖②中:∠BQM=∠ABN+∠BAM
          ∵△ABM≌△BCN
          ∴∠BAM=∠CBN
          ∴∠BQM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°
          圖③中:
          ∠BQM=∠N+∠NAQ
          ∵△ABM≌△BCN,
          ∴∠N=∠M,且∠NAQ=∠CAM,
          又∵∠ACB=∠M+∠CAM=∠N+∠NAQ,
          且∠BQM=∠N+∠NAQ,
          ∴∠BQM=∠ACB=60°.
          點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,及等邊三角形的性質(zhì),三角形的內(nèi)角和外角的關(guān)系.是一道基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
          底邊
          =
          BC
          AB
          .容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
          (1)sad 60°的值為( B。
          A.
          1
          2
          ;B.1;C.
          3
          2
          ;D.2
          (2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
           

          (3)已知sinα=
          3
          5
          ,其中α為銳角,試求sadα的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1997•海南)如圖,正三角ABC內(nèi)接于⊙O,已知⊙O的半徑為2cm,求陰影部分的面積(精確到0.1cm).[可供選用的數(shù)據(jù):
          2
          ≈1.1414
          3
          ≈1.732
          ,π≈3.142].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為(  ▼  )

           A.             B.1                  C.                  D.2

          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

          (3)已知,其中為銳角,試求sad的值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為( ▼ )
          A.B.1 C.D.2
          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
          (3)已知,其中為銳角,試求sad的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為(  ▼  )

           A.             B. 1                  C.                  D. 2

          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

          (3)已知,其中為銳角,試求sad的值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案