日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點(diǎn)A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點(diǎn),這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.

          【答案】有觸礁危險,理由見解析.

          【解析】試題分析:過點(diǎn)PPDACD,在RtPBDRtPAD中,根據(jù)三角函數(shù)AD,BD就可以PD表示出來,根據(jù)AB=12海里,就得到一個關(guān)于PD的方程,求得PD.從而可以判斷如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險.

          試題解析:有觸礁危險.理由:過點(diǎn)PPDACD

          設(shè)PDx,

          RtPBD中,PBD=90°-45°=45°

          BD=PD=x

          RtPAD中,

          ∵∠PAD=90°-60°=30°

          AD=

          AD=AB+BD

          x=12+x

          x=

          6+1)<18

          漁船不改變航線繼續(xù)向東航行,有觸礁危險.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在學(xué)習(xí)了軸對稱知識之后,數(shù)學(xué)興趣小組的同學(xué)們對課本習(xí)題進(jìn)行了深入研究,請你跟隨興趣小組的同學(xué),一起完成下列問題.

          (1)(課本習(xí)題)如圖①,ABC是等邊三角形,BD是中線,延長BCE,使CE=CD 求證:DB=DE

          (2)(嘗試變式)如圖②,ABC是等邊三角形,DAC邊上任意一點(diǎn),延長BCE,使CE=AD

          求證:DB=DE

          (3)(拓展延伸)如圖③,ABC是等邊三角形,DAC延長線上任意一點(diǎn),延長BCE,使CE=AD請問DBDE是否相等? 并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,的垂直平分線交邊于點(diǎn)的垂 直平分線交邊于點(diǎn)

          的周長.

          的度數(shù).

          判斷△AEN 的形狀并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形中,點(diǎn)的中點(diǎn),延長交于點(diǎn),連結(jié),

          1)求證:四邊形是平行四邊形;

          2)當(dāng)平分時,寫出的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:我們把對角線相等的四邊形叫做和美四邊形.

          請舉出一種你所學(xué)過的特殊四邊形中是和美四邊形的例子.

          如圖1,E,FG,H分別是四邊形ABCD的邊AB,BC,CDDA的中點(diǎn),已知四邊形EFGH是菱形,求證:四邊形ABCD是和美四邊形;

          如圖2,四邊形ABCD是和美四邊形,對角線ACBD相交于O,,EF分別是AD、BC的中點(diǎn),請?zhí)剿?/span>EFAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以的頂點(diǎn)O圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于的長為半徑畫弧,兩弧在內(nèi)部交于點(diǎn)E.作射線OE,連接CD.則下列說法錯誤的是( )

          A. 射線OE的平分線B. 是等腰三角形

          C. 直線OE垂直平分線段CDD. O、E兩點(diǎn)關(guān)于CD所在直線對稱

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進(jìn)了50m到達(dá)D處,此時遇到一斜坡,坡度i=1: ,沿著斜坡前進(jìn)20米到達(dá)E處測得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請你計算出該建筑物BC的高度.(取=1.732,結(jié)果精確到0.1m).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,ABC(如圖).

          1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫作法):

          ①作∠BAC的平分線AD,交BC于點(diǎn)D;

          ②作AB邊的垂直平分線EF,分別交ADAB于點(diǎn)E,F

          2)連接BE,若∠ABC60°,∠C40°,求∠AEB的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠C=90°AD是∠BAC的平分線,DEABEFAC上,且BD=DF

          1)求證:CF=EB;

          2)試判斷ABAFEB之間存在的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案