日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•內(nèi)江)閱讀材料:
          如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
          (1)理解與應用:
          如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結論求出FM+FN的長.
          (2)類比與推理:
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
          已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
          (3)拓展與延伸:
          若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.

          【答案】分析:(1)已知BE=BC,采用面積分割法,S△BFE+S△BCF=S△BEC得出三角形高的數(shù)量關系.
          (2)連接PA,PB,PC,仿照面積的割補法,得出S△PBC+S△PAC+S△PAB=S△ABC,而這幾個三角形的底相等,故可得出高的關系.
          (3)問題轉化為正n邊形時,根據(jù)正n邊形計算面積的方法,從中心向各頂點連線,可得出n個全等的等腰三角形,用邊長為底,邊心距為高,可求正n邊形的面積,然后由P點向正n多邊形,又可把正n邊形分割成n過三角形,以邊長為底,以r1r2…rn為高表示面積,列出面積的等式,可求證r1+r2+…+rn為定值.
          解答:解:(1)過E點作EH⊥BC,垂足為H,連接BF,
          ∵BE=BC=3,∠EBH=45°,
          ∴EH=,
          ∵S△BFE+S△BCF=S△BEC,
          BE×FN+BC×FM=BC×EH,
          ∵BE=BC,
          ∴FN+FM=EH=

          (2)連接PA,PB,PC,
          ∵S△PBC+S△PAC+S△PAB=S△ABC,
          BC•r1+AC•r2+AB•r3=BC•h,
          ∵BC=AC=AB,
          ∴r1+r2+r3=h.

          (3)設n邊形的邊心距為r,則:r1+r2+…+rn=nr(定值).
          點評:本題主要利用面積分割法,求線段之間的關系,充分體現(xiàn)了面積法解題的作用.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          在平面直角坐標系中,已知兩點坐標P1(x1,y1)P2(x2,y2)我們就可以使用兩點間距離公式P1P2=
          (x1-x2)2+(y1-y 2)2
          來求出點P1與點P2間的距離.如:已知P1(-1,2),P2(0,3),則P1P2=
          (-1-0)2+(2-3)2
          =
          2

          通過閱讀材以上材料,請回答下列問題:
          (1)已知點P1坐標為(-1,3),點P2坐標為(2,1)
          ①求P1P2=
          13
          13

          ②若點Q在x軸上,則△QP1P2的周長最小值為
          6+
          13
          6+
          13

          (2)如圖,在平面直角坐標系中,四邊形OABC為長方形,點A、B的坐標分別為
          (4,0)(4,3),動點M、N分別從點O,點B同時出發(fā),以每秒1個單位的速度運動,其中M點沿OA向終點A運動,N點沿BC向終點C運動,過點N作NF⊥BC交AC于F,交AO于G,連結MF.
          當兩點運動了t秒時:
          ①直接寫出直線AC的解析式:
          y=-
          3
          4
          x+3
          y=-
          3
          4
          x+3
          ;
          ②F點的坐標為(
          4-t
          4-t
          ,
          3
          4
          t
          3
          4
          t
          );(用含t的代數(shù)式表示)
          ③記△MFA的面積為S,求S與t的函數(shù)關系式;(0<t<4);
          ④當點N運動到終點C點時,在y軸上是否存在點E,使△EAN為等腰三角形?若存在,請直接寫出點E的坐標,若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2009•內(nèi)江)如圖所示,已知點A(-1,0),B(3,0),C(0,t),且t>0,tan∠BAC=3,拋物線經(jīng)過A、B、C三點,點P(2,m)是拋物線與直線l:y=k(x+1)的一個交點.
          (1)求拋物線的解析式;
          (2)對于動點Q(1,m),求PQ+QB的最小值;
          (3)若動點M在直線l上方的拋物線上運動,求△AMP的邊AP上的高h的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《四邊形》(07)(解析版) 題型:解答題

          (2009•內(nèi)江)閱讀材料:
          如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
          (1)理解與應用:
          如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結論求出FM+FN的長.
          (2)類比與推理:
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
          已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
          (3)拓展與延伸:
          若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

          (2009•內(nèi)江)閱讀材料:
          如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
          (1)理解與應用:
          如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結論求出FM+FN的長.
          (2)類比與推理:
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
          已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
          (3)拓展與延伸:
          若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.

          查看答案和解析>>

          同步練習冊答案