日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,以△ABC的邊AB為直徑作⊙O,交BC于D點(diǎn),交AC于E點(diǎn),BD=DE
          (1)求證:△ABC是等腰三角形;
          (2)若E是AC的中點(diǎn),⊙O的半徑為2,連接BE,求陰影部分的面積.
          分析:(1)利用同弦所對的圓心角相等和圓周解是圓心角的一半等量代換得出∠C=∠ABC,從而得出三角形是等腰三角形.
          (2)從圖中可以看出陰影部分的面積=扇形OBD的面積.根據(jù)扇形的面積公式計(jì)算即可.
          解答:精英家教網(wǎng)(1)證明:∵BD=DE,
          ∴∠BOD=∠DOE.
          ∵∠BAC=
          1
          2
          ∠BOE,
          ∴∠BOE=∠BOD=∠DOE.
          ∵OA=OE,
          ∴∠BAC=∠OEA.
          ∴∠OEA=∠DOE.
          ∴AC∥OD.
          ∴∠C=∠ODB.
          ∵∠ABC=∠ODE,
          ∴∠C=∠ABC.
          ∴△ABC是等腰三角形.

          (2)解:根據(jù)扇形面積公式得:
          60π×4
          360
          =
          2
          3
          π
          點(diǎn)評:本題綜合考查了等弦對等角,及圓心角是同弧所對的圓周角的2倍,及扇形的面積公式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
          (1)當(dāng)∠BAC滿足什么條件時,四邊形ADFE是矩形;
          (2)當(dāng)∠BAC滿足什么條件時,平行四邊形ADFE不存在;
          (3)當(dāng)△ABC分別滿足什么條件時,平行四邊形ADFE是菱形,正方形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,以△ABC的邊AB為直徑作⊙O,交BC于D點(diǎn),交AC于E點(diǎn),BD=DE
          (1)求證:△ABC是等腰三角形;
          (2)若E是AC的中點(diǎn),求
          BD
          的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•峨眉山市二模)如圖,以△ABC的邊AB為直徑作⊙O,BC與⊙O交于D,D是BC的中點(diǎn),過D作DE⊥AC,交AC于點(diǎn)E.
          (1)求證:DE是⊙O的切線;
          (2)若AB=10,BD=8,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•黔東南州)如圖,以△ABC的邊BC為直徑作⊙O分別交AB,AC于點(diǎn)F.點(diǎn)E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
          求證:DM2=DH•DA.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,以△ABC的邊AB為直徑的⊙O交AC于點(diǎn)D,弦DE∥AB,∠C=∠BAF
          (1)求證:BC為⊙O的切線;
          (2)若⊙O的半徑為5,AD=2
          5
          ,求DE的長.

          查看答案和解析>>

          同步練習(xí)冊答案