日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)閱讀材料:設(shè)一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-
          b
          a
          ,x1•x2=
          c
          a

          根據(jù)該材料:已知x1、x2是方程x2+6x+3=0的兩實(shí)數(shù)根,求
          x2
          x1
          +
          x1
          x2
          的值.
          (2)已知二次函數(shù)y=ax2+bx+c中,其函數(shù)y與自變量x之間的部分對(duì)應(yīng)值如下表所示:
          x 0 1 2 3
          y 5 2 1 2
          點(diǎn)A(x1,y1)、B(x2,y2)在函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時(shí),試判斷y1與y2的大小關(guān)系.
          分析:(1)根據(jù)根與系數(shù)的關(guān)系得出x1+x2=-
          b
          a
          =-6,x1•x2=
          c
          a
          =3,進(jìn)而將原式變形求出即可;
          (2)根據(jù)圖表得出2<y1<5,1<y2<2,即可得出答案.
          解答:解;(1)∵x1、x2是方程x2+6x+3=0的兩實(shí)數(shù)根,
          ∴x1+x2=-
          b
          a
          =-6,x1•x2=
          c
          a
          =3,
          x2
          x1
          +
          x1
          x2
          =
          x
          2
          2
          +x
          2
          1
          x1x2
          =
          (x1+x2)2-2x1x2
          x 1x2
          =
          36-2×3
          3
          =10;

          (2)根據(jù)圖表可得出:∵當(dāng)0<x1<1時(shí),2<y1<5,當(dāng)2<x2<3時(shí),1<y2<2,
          ∴y1>y2
          點(diǎn)評(píng):此題主要考查了根與系數(shù)的關(guān)系以及利用圖表得出正確數(shù)據(jù)信息,利用已知得出2<y1<5,1<y2<2是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀材料,并解答問(wèn)題:
          我們已經(jīng)學(xué)過(guò)了一元一次不等式的解法,對(duì)于一些特殊的不等式,我們用作函數(shù)圖象的方法求出它的解集,這也是《數(shù)學(xué)新課程標(biāo)準(zhǔn)》中所要求掌物的內(nèi)容.例如:如何求不等式
          3
          x
          >x+2的解集呢我們可以設(shè)y1=
          3
          x
          ,y2=x+2.然后求出它們的交點(diǎn)的坐標(biāo),并在同一直角坐標(biāo)系中畫(huà)出它們的函數(shù)圖象,通過(guò)看圖,可以發(fā)現(xiàn)此不等式的解集是“x<-3或0<x<1”
          用上面的知識(shí)解決問(wèn)題:求不等式x2-x>x+3的解集.
          (1)設(shè)函數(shù)y1=
           
          ;y2=
           

          (2)兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)為
           

          (3)在所給的直角坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象(不要列表).
          (4)觀(guān)察發(fā)現(xiàn):不等式x2-x>x+3的解集為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線(xiàn)垂直的三條直線(xiàn),外側(cè)兩條直線(xiàn)之間的距離叫△ABC的“水平寬”(a),中間的這條直線(xiàn)在△ABC內(nèi)部線(xiàn)段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
          12
          ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
          解答下列問(wèn)題:
          如圖2,拋物線(xiàn)頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(xiàn)(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
          (1)求拋物線(xiàn)的解析式;
          (2)若點(diǎn)B為拋物線(xiàn)與y軸的交點(diǎn),求直線(xiàn)AB的解析式;
          (3)在(2)的條件下,設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
          (4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫(xiě)出h和S關(guān)于x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          (2012•赤峰)閱讀材料:
          (1)對(duì)于任意兩個(gè)數(shù)a、b的大小比較,有下面的方法:
          當(dāng)a-b>0時(shí),一定有a>b;
          當(dāng)a-b=0時(shí),一定有a=b;
          當(dāng)a-b<0時(shí),一定有a<b.
          反過(guò)來(lái)也成立.因此,我們把這種比較兩個(gè)數(shù)大小的方法叫做“求差法”.
          (2)對(duì)于比較兩個(gè)正數(shù)a、b的大小時(shí),我們還可以用它們的平方進(jìn)行比較:
          ∵a2-b2=(a+b)(a-b),a+b>0
          ∴(a2-b2)與(a-b)的符號(hào)相同
          當(dāng)a2-b2>0時(shí),a-b>0,得a>b
          當(dāng)a2-b2=0時(shí),a-b=0,得a=b
          當(dāng)a2-b2<0時(shí),a-b<0,得a<b
          解決下列實(shí)際問(wèn)題:
          (1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問(wèn)題:
          ①W1=
          3x+7y
          3x+7y
          (用x、y的式子表示)
          W2=
          2x+8y
          2x+8y
          (用x、y的式子表示)
          ②請(qǐng)你分析誰(shuí)用的紙面積最大.
          (2)如圖1所示,要在燃?xì)夤艿纋上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:

          方案一:如圖2所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a1=AB+AP.
          方案二:如圖3所示,點(diǎn)A′與點(diǎn)A關(guān)于l對(duì)稱(chēng),A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a2=AP+BP.
          ①在方案一中,a1=
          (3+x)
          (3+x)
          km(用含x的式子表示);
          ②在方案二中,a2=
          x2+48
          x2+48
          km(用含x的式子表示);
          ③請(qǐng)你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•房縣模擬)問(wèn)題:對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).如:P(-2,3)、Q(2,5)則P、Q兩點(diǎn)的直角距離為d(P,Q)=|-2-2|+|3-5|=6
          請(qǐng)根據(jù)根據(jù)以上閱讀材料,解答下列問(wèn)題:
          (1)計(jì)算M(-2,7),N(-3,-5)的直角距離d(M,N)=
          13
          13

          (2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿(mǎn)足d(O,P)=1,則x與y之間滿(mǎn)足的關(guān)系式為
          |x|+|y|=1
          |x|+|y|=1

          (3)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線(xiàn)y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線(xiàn)y=ax+b的直角距離,試求點(diǎn)M(4,2)到直線(xiàn)y=x+2的直角距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀材料后回答問(wèn)題:
          [材料一]蒼南新聞網(wǎng)報(bào)道:2009年12月20日,D5586次動(dòng)車(chē)從浙江蒼南站出發(fā)駛向上海南站,這標(biāo)志著蒼南火車(chē)站成為全國(guó)第一個(gè)開(kāi)行始發(fā)動(dòng)車(chē)的縣級(jí)站.D5586次動(dòng)車(chē)時(shí)刻表部分如下:
          蒼南(11:40開(kāi))-->寧波(14:00開(kāi))-->杭州(15:50開(kāi))-->上海南(17:25到)
          (假設(shè)沿途各站停靠時(shí)間不計(jì))
          [材料二]蒼南至上海南站的鐵路里程約為716千米.D5586次動(dòng)車(chē)在寧波至杭州段的平均速度比蒼南至寧波段的少54千米/時(shí),在杭州至上海段的平均速度是蒼南至寧波段的
          4
          5

          問(wèn)題:
          (1)設(shè)D5586次動(dòng)車(chē)在蒼南至寧波段的平均速度為x千米/時(shí),則寧波至杭州段的里程是
          11
          6
          (x-54)
          11
          6
          (x-54)
          千米(用含x的代數(shù)式表示).
          (2)求該動(dòng)車(chē)在杭州至上海段的平均速度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案