日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 直線分別交x軸、y軸于A、B兩點,△AOB繞點O按逆時針方向旋轉90°后得到△COD,拋物線yax2bxc經(jīng)過AC、D三點.

          (1) 寫出點A、B、CD的坐標;

          (2) 求經(jīng)過A、C、D三點的拋物線表達式,并求拋物線頂點G的坐標;

          (3) 在直線BG上是否存在點Q,使得以點A、B、Q為頂點的三角形與△COD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

          圖1

          (1)A(3,0),B(0,1),C(0,3),D(-1,0).

          (2)因為拋物線yax2bxc經(jīng)過A(3,0)、C(0,3)、D(-1,0) 三點,

          所以  解得 

          所以拋物線的解析式為y=-x2+2x+3=-(x-1)2+4,頂點G的坐標為(1,4).

          (3)如圖2,直線BG的解析式為y=3x+1,直線CD的解析式為y=3x+3,因此CD//BG

          因為圖形在旋轉過程中,對應線段的夾角等于旋轉角,所以ABCD.因此ABBG,即∠ABQ=90°.

          因為點Q在直線BG上,設點Q的坐標為(x,3x+1),那么

          Rt△COD的兩條直角邊的比為1∶3,如果Rt△ABQ與Rt△COD相似,存在兩種情況:

          ①當時,.解得.所以,

          ②當時,.解得.所以,

          圖2                         圖3

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2012•拱墅區(qū)一模)如圖,在平面直角坐標系中,直線y=-x+1分別交x軸、y軸于A,B兩點,點P(a,b)是反比例函數(shù)y=
          1
          2x
          在第一象限內(nèi)的任意一點,過點P分別作PM⊥x軸于點M,PN⊥y 軸于點N,PM,PN分別交直線AB于E,F(xiàn),有下列結論:①AF=BE;②圖中的等腰直角三角形有4個;③S△OEF=
          1
          2
          (a+b-1);④∠EOF=45°.其中結論正確的序號是
          ②③④
          ②③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖,直線數(shù)學公式分別交x軸、y軸于B、A兩點,拋物線L:y=ax2+bx+c的頂點G在x軸上,且過(0,4)和(4,4)兩點.
          (1)求拋物線L的解析式;
          (2)拋物線L上是否存在這樣的點C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點的坐標,若不存在,請說明理由;
          (3)將拋物線L沿x軸平行移動得拋物線L1,其頂點為P,同時將△PAB沿直線AB翻折得到△DAB,使點D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應的函數(shù)關系式,若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010-2011學年北京市順義區(qū)李橋中學九年級(上)第三次月考數(shù)學試卷(解析版) 題型:解答題

          如圖,直線分別交x軸、y軸于B、A兩點,拋物線L:y=ax2+bx+c的頂點G在x軸上,且過(0,4)和(4,4)兩點.
          (1)求拋物線L的解析式;
          (2)拋物線L上是否存在這樣的點C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點的坐標,若不存在,請說明理由;
          (3)將拋物線L沿x軸平行移動得拋物線L1,其頂點為P,同時將△PAB沿直線AB翻折得到△DAB,使點D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應的函數(shù)關系式,若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年重慶市一中中考數(shù)學二模試卷(解析版) 題型:解答題

          如圖,直線分別交x軸、y軸于B、A兩點,拋物線L:y=ax2+bx+c的頂點G在x軸上,且過(0,4)和(4,4)兩點.
          (1)求拋物線L的解析式;
          (2)拋物線L上是否存在這樣的點C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請求出C點的坐標,若不存在,請說明理由;
          (3)將拋物線L沿x軸平行移動得拋物線L1,其頂點為P,同時將△PAB沿直線AB翻折得到△DAB,使點D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對應的函數(shù)關系式,若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(黑龍江黑河、齊齊哈爾、大興安嶺卷)數(shù)學(解析版) 題型:解答題

          如圖,平面直角坐標系中,直線l分別交x軸、y軸于A、B兩點(OA<OB)且OA、OB的長分別是一元二次方程的兩個根,點C在x軸負半軸上,

          且AB:AC=1:2

          (1)求A、C兩點的坐標;

          (2)若點M從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連接AM,設△ABM的面積為S,點M的運動時間為t,寫出S關于t的函數(shù)關系式,并寫出自變量的取值范圍;

          (3)點P是y軸上的點,在坐標平面內(nèi)是否存在點Q,使以 A、B、P、Q為頂點的四邊形是菱形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

           

          查看答案和解析>>

          同步練習冊答案