日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知當(dāng)x=-1時(shí),代數(shù)式2mx3-3nx+6的值為17.
          (1)若關(guān)于y的方程2my+n=4-ny-m的解為y=2,求mn的值;
          (2)若規(guī)定[a]表示不超過a的最大整數(shù),例如[4.3]=4,請(qǐng)?jiān)诖艘?guī)定下求[m-
          3n2
          ]
          的值.
          分析:(1)把x=-1代入2mx3-3nx+6=17得到一個(gè)關(guān)于m,n的方程,把y=2代入方程2my+n=4-ny-m得到一個(gè)關(guān)于m,n的方程,即可得到一個(gè)方程組,解方程組即可求得m,n的值,代入代數(shù)式即可求解;
          (2)把m,n的值代入代數(shù)式求值,根據(jù)[a]表示的意義即可求解.
          解答:解:(1)把x=-1代入2mx3-3nx+6,根據(jù)題意得:-2m+3n+6=17,則2m-3n=-11.
          把y=2代入方程得:4m+n=4-2n-m,即5m+3n=4,
          根據(jù)題意得:
          2m-3n=-11
          5m+3n=4
          ,
          解得:
          m=-1
          n=3
          ,
          則mn=-1;

          (2)m-
          3n
          2
          =-1-
          9
          2
          =-5.5,則[-5.5]=-6.
          點(diǎn)評(píng):本題考查了方程的解的定義,以及解方程組,正確求得m,n的值是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          25、已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
          解:不妨設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
          由題意,得ab=a+b,(*)
          則ab=a+b≤b+b=2b,所以a≤2,
          因?yàn)閍為正整數(shù),所以a=1或2,
          ①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
          ②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
          所以這兩個(gè)正整數(shù)為2和2.
          仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個(gè)正整數(shù),它們的和與積相等試說明你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          根據(jù)一元二次方程根的定義,解答下列問題.
          一個(gè)三角形兩邊長分別為3cm和7cm,第三邊長為a cm,且整數(shù)a滿足a2-10a+21=0,求三角形的周長.
          解:由已知可得4<a<10,則a可取5,6,7,8,9.(第一步)
          當(dāng)a=5時(shí),代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
          同理可知a=6,a=8,a=9都不是方程的根.
          ∴a=7是方程的根.(第二步)
          ∴△ABC的周長是3+7+7=17(cm).
          上述過程中,第一步是根據(jù)
          三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
          三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
          ,第二步應(yīng)用了
          分類討論
          分類討論
          數(shù)學(xué)思想,確定a的值的大小是根據(jù)
          方程根的定義
          方程根的定義

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
          解:設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
          由題意,得ab=a+b,…(*)
          則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
          因?yàn)閍為正整數(shù),所以a=1或2.
          ①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
          ②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
          所以這兩個(gè)正整數(shù)為2和2.
          仿照以上閱讀材料的解法解答下列問題:
          已知:三個(gè)正整數(shù)的和與積相等,求這三個(gè)正整數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          根據(jù)一元二次方程根的定義,解答下列問題.
          一個(gè)三角形兩邊長分別為3cm和7cm,第三邊長為a cm,且整數(shù)a滿足a2-10a+21=0,求三角形的周長.
          解:由已知可得4<a<10,則a可取5,6,7,8,9.(第一步)
          當(dāng)a=5時(shí),代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
          同理可知a=6,a=8,a=9都不是方程的根.
          ∴a=7是方程的根.(第二步)
          ∴△ABC的周長是3+7+7=17(cm).
          上述過程中,第一步是根據(jù)________,第二步應(yīng)用了________數(shù)學(xué)思想,確定a的值的大小是根據(jù)________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(03)(解析版) 題型:解答題

          (2004•淮安)已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
          解:不妨設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
          由題意,得ab=a+b,(*)
          則ab=a+b≤b+b=2b,所以a≤2,
          因?yàn)閍為正整數(shù),所以a=1或2,
          ①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
          ②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
          所以這兩個(gè)正整數(shù)為2和2.
          仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個(gè)正整數(shù),它們的和與積相等試說明你的理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案