日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•湖州)如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( 。
          分析:過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=
          5
          ,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出
          BF
          DE
          =
          OF
          OE
          ,
          CM
          DE
          =
          AM
          AE
          ,代入求出BF和CM,相加即可求出答案.
          解答:解:
          過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,
          ∵BF⊥OA,DE⊥OA,CM⊥OA,
          ∴BF∥DE∥CM,
          ∵OD=AD=3,DE⊥OA,
          ∴OE=EA=
          1
          2
          OA=2,
          由勾股定理得:DE=
          5
          ,
          設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,
          ∵BF∥DE∥CM,
          ∴△OBF∽△ODE,△ACM∽△ADE,
          BF
          DE
          =
          OF
          OE
          ,
          CM
          DE
          =
          AM
          AE
          ,
          ∵AM=PM=
          1
          2
          (OA-OP)=
          1
          2
          (4-2x)=2-x,
          BF
          5
          =
          x
          2
          ,
          CM
          5
          =
          2-x
          2
          ,
          解得:BF=
          5
          2
          x,CM=
          5
          -
          5
          2
          x,
          ∴BF+CM=
          5

          故選A.
          點(diǎn)評:本題考查了二次函數(shù)的最值,勾股定理,等腰三角形性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生運(yùn)用性質(zhì)和定理進(jìn)行推理和計(jì)算的能力,題目比較好,但是有一定的難度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•湖州)如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•湖州)如圖1,已知菱形ABCD的邊長為2
          3
          ,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(-
          3
          ,3),拋物線y=ax2+b(a≠0)經(jīng)過AB、CD兩邊的中點(diǎn).
          (1)求這條拋物線的函數(shù)解析式;
          (2)將菱形ABCD以每秒1個單位長度的速度沿x軸正方向勻速平移(如圖2),過點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時間為t秒(0<t<
          3

          ①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請說明理由;
          ②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時針方向旋轉(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時,求t的取值范圍.(寫出答案即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•湖州)如圖是七年級(1)班參加課外興趣小組人數(shù)的扇形統(tǒng)計(jì)圖,則表示唱歌興趣小組人數(shù)的扇形的圓心角度數(shù)是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•湖州)如圖,已知反比例函數(shù)y=
          kx
          (k≠0)的圖象經(jīng)過點(diǎn)(-2,8).
          (1)求這個反比例函數(shù)的解析式;
          (2)若(2,y1),(4,y2)是這個反比例函數(shù)圖象上的兩個點(diǎn),請比較y1、y2的大小,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案