日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F ,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.

          ⑴ 求證:△BCE≌△DCF;

          ⑵ OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;

          ⑶ 若GE·GB=4-2,求 正方形ABCD的面積.

           

             

           

           

          【答案】

          解:(1)

           

          (2)                   

                            

          (3)設(shè)BC=x,則DC=x  ,

          BD=,CF=(-1)x      

          GD2=GE·GB=4-2                                     

          DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2)    

          (4-2)x2=4(4-2)    x2=4              

          正方形ABCD的面積是4個(gè)平方單位                        

          【解析】(1)利用正方形的性質(zhì)找出全等三角形的條件即可

          (2)找出全等三角形的條件,證明點(diǎn)G為DF的中點(diǎn),則OG為的中位線

          (3)利用勾股定理求出正方形的邊長(zhǎng)即可

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長(zhǎng)線于點(diǎn)G,連接OG.
          (1)求證:△BCE≌△DCF;
          (2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
          (3)若GE•GB=4-2
          2
          ,求正方形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖在正方形OADC中,點(diǎn)C的坐標(biāo)為(0,4),點(diǎn)A的坐標(biāo)為(4,0),CD的延長(zhǎng)線交雙曲線y=
          32
          x
          于點(diǎn)B.
          (1)求直線AB的解析式;精英家教網(wǎng)
          精英家教網(wǎng)
          (2)G為x軸的負(fù)半軸上一點(diǎn)連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
          (3)在(2)的條件下,延長(zhǎng)DA交CE的延長(zhǎng)線于F,當(dāng)G在x的負(fù)半軸上運(yùn)動(dòng)的過程中,請(qǐng)問
          OG+GF
          DF
          的值是否為定值,若是,請(qǐng)求出其值;若不是,請(qǐng)說明你的理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點(diǎn)與點(diǎn)A重合,直角頂點(diǎn)F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),(點(diǎn)P與點(diǎn)F重合),如圖所示:

          (1)求證:EP2+GQ2=PQ2;
          (2)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請(qǐng)說明理由;
          (3)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長(zhǎng)線于P、Q兩點(diǎn),并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請(qǐng)直接寫出你的結(jié)論(不用證明).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,正方形ABCD的邊長(zhǎng)為2a,H是以BC為直徑的半圓O上一點(diǎn),過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
          (1)當(dāng)點(diǎn)H在半圓上移動(dòng)時(shí),切線EF在AB、CD上的兩個(gè)交點(diǎn)也分別在AB、CD上移動(dòng)(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長(zhǎng)是否也在變化?證明你的結(jié)論;
          (2)設(shè)△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
          1348
          S,求BE與CF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,正方形紙片ABCD的邊長(zhǎng)是4,點(diǎn)M、N分別在兩邊AB和CD上(其中點(diǎn)N不與點(diǎn)C重合),沿直線MN折疊該紙片,點(diǎn)B恰好落在AD邊上點(diǎn)E處.
          (1)設(shè)AE=x,四邊形AMND的面積為 S,求 S關(guān)于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
          (2)當(dāng)AM為何值時(shí),四邊形AMND的面積最大?最大值是多少?
          (3)點(diǎn)M能是AB邊上任意一點(diǎn)嗎?請(qǐng)求出AM的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案