日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點,且AFE=D.

          (1)求證:ABF∽△BEC;

          (2)若AD=5,AB=8,sinD=,求AF的長.

          【答案】(1)證明見解析;(2). AF=2 .

          【解析】

          試題分析:(1)由平行四邊形的性質(zhì)得出ABCD,ADBC,AD=BC,得出D+C=180°,ABF=BEC,證出C=AFB,即可得出結(jié)論;(2)由勾股定理求出BE,由三角函數(shù)求出AE,再由相似三角形的性質(zhì)求出AF的長.

          試題解析:(1)證明:四邊形ABCD是平行四邊形,ABCD,ADBC,AD=BC,

          ∴∠D+C=180°,ABF=BEC,∵∠AFB+AFE=180°,∴∠C=AFB,∴△ABF∽△BEC;

          (2)解:AEDC,ABDC,∴∠AED=BAE=90°,

          在RtABE中,根據(jù)勾股定理得:BE=,

          在RtADE中,AE=ADsinD=5×=4,BC=AD=5,

          由(1)得:ABF∽△BEC,,即,解得:AF=2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測得FGEH,GH=2.6m,FGB=65°.

          (1)求證:GFOC;

          (2)求EF的長(結(jié)果精確到0.1m).

          (參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣節(jié)能燈,為響應(yīng)號召,某商場計劃購進(jìn)甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進(jìn)價、售價如下表:

          進(jìn)價(/)

          售價(/)

          25

          30

          45

          60

          (1)如何進(jìn)貨,進(jìn)貨款恰好為46000元?

          (2)如何進(jìn)貨,商場銷售完節(jié)能燈時獲利最多且不超過進(jìn)貨價的30%,此時利潤為多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,點AB為反比例函數(shù)的圖像上兩點,A點的橫坐標(biāo)與B點的縱坐標(biāo)均為1,將的圖像繞原點O順時針旋轉(zhuǎn)90°,A點的對應(yīng)點為A’,B點的對應(yīng)點為B’

          1)點A’的坐標(biāo)是   ,點B’的坐標(biāo)是   ;

          2)在x軸上取一點P,使得PA+PB的值最小,直接寫出點P的坐標(biāo). 此時在反比例函數(shù)的圖像上是否存在一點Q,使A’B’Q的面積與PAB的面積相等,若存在,求出點Q的橫坐標(biāo);若不存在,請說明理由;

          3)連接AB’,動點MA點出發(fā)沿線段AB’以每秒1個單位長度的速度向終點B’運動;動點N同時從B’點出發(fā)沿線段B’A’以每秒1個單位長度的速度向終點A’運動.當(dāng)其中一個點停止運動時,另一個點也隨之停止運動.設(shè)運動的時間為t秒,試探究:是否存在使MNB’為等腰直角三角形的t值.若存在,求出t的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知反比例函數(shù)的圖象經(jīng)過點A1,3).

          1)試確定此反比例函數(shù)的解析式;

          2)當(dāng)=2, y的值;

          3)當(dāng)自變量5增大到8時,函數(shù)值y是怎樣變化的?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知∠AOB90°,OC為一條射線,OEOF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,△ABO的面積為8OAOB,BC12,點P的坐標(biāo)是(a6).

          (1) ABC三個頂點的坐標(biāo)分別為A , ),B , ),C , );

          (2) 是否存在點P,使得?若存在,求出滿足條件的所有點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對這批產(chǎn)品上市后每天的銷售情況進(jìn)行了跟蹤調(diào)查.其中,國內(nèi)市場的日銷售量y1(萬件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.

          (1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1t的變化規(guī)律,寫出y1t的函數(shù)關(guān)系式及自變量t的取值范圍;

          (2)分別探求該產(chǎn)品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;

          (3)設(shè)國內(nèi)、外市場的日銷售總量為y萬件,寫出y與時間t的函數(shù)關(guān)系式,并判斷上市第幾天國內(nèi)、外市場的日銷售總量y最大,并求出此時的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在550之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,(即出廠價=基礎(chǔ)價+浮動價其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26.(利潤=出廠價-成本價)

          薄板的邊長(cm

          20

          30

          出廠價(元/張)

          50

          70

          (1)求一張薄板的出廠價y與邊長x之間滿足的函數(shù)關(guān)系式;

          (2)求一張薄板的利潤p與邊長x之間的函數(shù)關(guān)系式;

          (3)若一張薄板的利潤是34元,且成本最低,此時薄板的邊長為多少?當(dāng)薄板的邊長為多少時,所獲利潤最大,求出這個最大值。

          查看答案和解析>>

          同步練習(xí)冊答案