【題目】關(guān)于x的方程(a-2)x2+x+a2-4=0的一個(gè)根是0,則a的值為( )
A. 2B. -2C. 2或-2D. 0
【答案】C
【解析】
根據(jù)一元二次方程的解的定義,把x=0代入方程可得關(guān)于a的一元二次方程,解方程可求出a的值即可.
把x=0代入方程(a-2)x2+x+a2-4=0得:0+0+a2-4=0,
a=±2,
當(dāng)a=2時(shí),方程是一元一次方程,
當(dāng)a=-2時(shí),方程為一元二次方程,
∴a=2和-2都符合題意,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)x = 3時(shí),下列不等式成立的是 ( )
A. x+3>5 B. x+3>6 C. x+3>7 D. x+3>8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在A(yíng)C上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒,△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫(huà)出y1的圖象;
(2)如圖2,y2的圖象是拋物線(xiàn)的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長(zhǎng);
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)(0<OG<6),過(guò)G作EF垂直于x軸,分別交y1、y2于點(diǎn)E、F.
①說(shuō)出線(xiàn)段EF的長(zhǎng)在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線(xiàn)段EF長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),求證:BD⊥CF.BD=CF.
(2)如圖2,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),其它條件不變,第(1)問(wèn)結(jié)論還成立嗎?并說(shuō)明理由.
(3)如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的反向延長(zhǎng)線(xiàn)上時(shí),且點(diǎn)A、F分別在直線(xiàn)BC的兩側(cè),其它條件不變:
①請(qǐng)直接寫(xiě)出CF、BC、CD三條線(xiàn)段之間的關(guān)系.
②若連接正方形對(duì)角線(xiàn)AE、DF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩條紙帶,較長(zhǎng)的一條為23 cm,較短的一條為15 cm.把兩條紙帶剪下同樣長(zhǎng)的一段后,在剩下的兩條紙帶中,要求較長(zhǎng)的紙帶的長(zhǎng)度不少于較短的紙帶長(zhǎng)度的兩倍,那么每條紙帶剪下的長(zhǎng)度至少是________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BA的延長(zhǎng)線(xiàn)上,BE=AF,CF∥AE,CF與邊AD相交于點(diǎn)G.
求證:(1)FD=CG;
(2)CG2=FGFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)D是△ABC的邊BC的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別為E,F(xiàn),且BF=CE.求證:△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若P(﹣3,2)與P′(3,n+1)關(guān)于原點(diǎn)對(duì)稱(chēng),則n=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com