日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn)A,與軸交點(diǎn)C,拋物線過(guò)AC兩點(diǎn),與x軸交于另一點(diǎn)B

          1)求拋物線的解析式.

          2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求sinEBA的值.

          3)點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對(duì)稱軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,N,E,B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          【答案】1,(2 ,(3)存在;(2,﹣10)或(﹣4,﹣10)或(0,6

          【解析】

          1)先由直線解析式求出點(diǎn)AC坐標(biāo),再將所求坐標(biāo)代入二次函數(shù)解析式,求解可得;

          2)先求出B10),設(shè)Et,),作EHx軸、FGx軸,知EHFG,由EF=BF,結(jié)合BH=1-t可得,據(jù)此知F,),從而得出方程,解方程得出點(diǎn)E坐標(biāo),再進(jìn)一步求解可得;

          3)分EB為平行四邊形的邊和EB為平行四邊形的對(duì)角線兩種情況,其中EB為平行四邊形的邊時(shí)再分點(diǎn)M在對(duì)稱軸右側(cè)和左側(cè)兩種情況分別求解可得.

          解:(1)在y2x+6中,當(dāng)x0時(shí)y6,當(dāng)y0時(shí)x=﹣3

          C0,6)、A(﹣3,0),

          ∵拋物線的圖象經(jīng)過(guò)AC兩點(diǎn),

          ,解得:

          ∴拋物線的解析式為;

          2)令﹣2x24x+60,

          解得B1,0),

          設(shè)點(diǎn)E的橫坐標(biāo)為t,∴Et,),

          如圖,過(guò)點(diǎn)EEHx軸于點(diǎn)H,過(guò)點(diǎn)FFGx軸于點(diǎn)G,則EHFG

          ,

          ,

          ∴點(diǎn)F的橫坐標(biāo)為

          直線AC的解析式為y2x6,

          ,

          t2+3t+20,解得

          當(dāng)t=﹣2時(shí),

          當(dāng)t=﹣1時(shí),

          當(dāng)點(diǎn)E的坐標(biāo)為(﹣26)時(shí),在RtEBH中,EH6BH3,

          ;

          同理,當(dāng)點(diǎn)E的坐標(biāo)為(﹣1,8)時(shí),

          ,

          sinEBA的值為;

          3)存在,且M的坐標(biāo)為(2,﹣10)或(﹣4,﹣10)或(06).

          ∵點(diǎn)N在對(duì)稱軸上,∴xN=﹣1,

          ①當(dāng)EB為平行四邊形的邊時(shí),分兩種情況:

          (Ⅰ)點(diǎn)M在對(duì)稱軸右側(cè)時(shí),BN為對(duì)角線,

          E,B1,0),

          ∴由平移的性質(zhì)得xM2,

          當(dāng)x2時(shí),y

          M2,﹣10);

          (Ⅱ)點(diǎn)M在對(duì)稱軸左側(cè)時(shí),BM為對(duì)角線,

          xN=﹣1,B10),E(﹣2,6),

          ∴由平移的性質(zhì)得xM=﹣4,

          當(dāng)x=﹣4時(shí),y

          M(﹣4,﹣10);

          ②當(dāng)EB為平行四邊形的對(duì)角線時(shí),

          B10),E,xN,

          ∴由中點(diǎn)坐標(biāo)公式得:1+(﹣2)=﹣1+xM,

          xM0,

          當(dāng)x0時(shí),y6,

          M0,6);

          綜上所述,M的坐標(biāo)為(2,﹣10)或(﹣4,﹣10)或(0,6).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,l是經(jīng)過(guò)A2,0),B0,b)兩點(diǎn)的直線,且b0,點(diǎn)C的坐標(biāo)為(2,0),當(dāng)點(diǎn)B移動(dòng)時(shí),過(guò)點(diǎn)CCDl交于點(diǎn)D

          1)求點(diǎn)DO之間的距離;

          2)當(dāng)tanCDO=時(shí),求直線l的解析式;

          3)在(2)的條件下,直接寫(xiě)出△ACD與△AOB重疊部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2mxn的圖像與坐標(biāo)軸交于AB、C三點(diǎn),其中A點(diǎn)的坐標(biāo)為、點(diǎn)B的坐標(biāo)是

          (1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

          (2)若點(diǎn)D的坐標(biāo)是,點(diǎn)F為該二次函數(shù)在第四象限內(nèi)圖像上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF.設(shè)平行四邊形CDEF的面積為S

          ①求S的最大值;

          ②在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖像上時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長(zhǎng)為13.3米,從DE兩處測(cè)得路燈A的仰角分別為α45°,且tanα6.求燈桿AB的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某服裝店老板到廠家選購(gòu)、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的.

          1)求、兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?

          2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),與x軸負(fù)半軸交于B,與正半軸交于點(diǎn),且

          1)求該二次函數(shù)解析式;

          2)若是線段上一動(dòng)點(diǎn),作,交于點(diǎn),連結(jié)當(dāng)面積最大時(shí),求點(diǎn)的坐標(biāo);

          3)若點(diǎn)軸上方的拋物線上的一個(gè)動(dòng)點(diǎn),連接,設(shè)所得的面積為.問(wèn):是否存在一個(gè)的值,使得相應(yīng)的點(diǎn)有且只有個(gè),若有,求出這個(gè)的值,并求此時(shí)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】“全民防控新冠病毒”期間某公司推出一款消毒產(chǎn)品,成本價(jià)8/千克,經(jīng)過(guò)市場(chǎng)調(diào)查,該產(chǎn)品的日銷售量(千克)與銷售單價(jià)(元/千克)之間滿足一次函數(shù)關(guān)系,該產(chǎn)品的日銷售量與銷售單價(jià)幾組對(duì)應(yīng)值如表:

          銷售單價(jià)(元/千克)

          12

          16

          20

          24

          日銷售量(千克)

          220

          180

          140

          (注:日銷售利潤(rùn)日銷售量(銷售單價(jià)成本單價(jià))

          1)求關(guān)于的函數(shù)解析式(不要求寫(xiě)出的取值范圍);

          2)根據(jù)以上信息,填空:

          _______千克;

          ②當(dāng)銷售價(jià)格_______元時(shí),日銷售利潤(rùn)最大,最大值是_______元;

          3)該公司決定從每天的銷售利潤(rùn)中捐贈(zèng)100元給“精準(zhǔn)扶貧”對(duì)象,為了保證捐贈(zèng)后每天的剩余利潤(rùn)不低于1500元,試確定該產(chǎn)品銷售單價(jià)的范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在的正方形網(wǎng)格圖形中(如圖1),從點(diǎn)經(jīng)過(guò)一次跳馬變換可以到達(dá)點(diǎn),,,等處現(xiàn)有的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn)經(jīng)過(guò)跳馬變換到達(dá)與其相對(duì)的頂點(diǎn),最少需要跳馬變換的次數(shù)是(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,ABAC,∠BAC90°

          1)如圖1,若直線ADBC相交于M,過(guò)點(diǎn)BAM的垂線,垂足為D,連接CD并延長(zhǎng)BDE,使得DEDC,過(guò)點(diǎn)EEFCDF,證明:ADEF+BD

          2)如圖2,若直線ADCB的延長(zhǎng)線相交于M,過(guò)點(diǎn)BAM的垂線,垂足為D,連接CD并延長(zhǎng)BDE,使得DEDC,過(guò)點(diǎn)EEFCDCD的延長(zhǎng)線于F,探究:ADEF、BD之間的數(shù)量關(guān)系,并證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案