日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將一個正方形紙片放置在平面直角坐標系中,點,點,點.動點在邊上,點在邊上,沿折疊該紙片,使點的對應點始終落在邊上(點不與重合),點落在點處,交于點

          (Ⅰ)如圖①,當時,求點的坐標;

          (Ⅱ)如圖②,當點落在的中點時,求點的坐標;

          (Ⅲ)隨著點邊上位置的變化,的周長是否發(fā)生變化?如變化,簡述理由;如不變,直接寫出其值.

          【答案】;(;()不變,的周長為8

          【解析】

          )根據含30°直角三角形的性質以及勾股定理,在Rt△AEM中運用勾股定理列出方程即可解答;

          (Ⅱ)由題意可得AM=MC=2,設AE=a,則OE=EM=4-a,在RtAEM中,利用勾股定理列出方程即可解答;

          )如圖,連接OM,OP,過點OOQ⊥MP于點Q,由折疊的性質及平行線的性質得到∠MOB=∠OMP,進而證明△AMO≌△QMOAAS),得到AM=QMAO=QO,再證明Rt△QOPRt△BOPHL),得到QP=BP,將△MPC的周長進行轉化即可得到AC+BC=8即可.

          解:()當時,

          ∵四邊形AOBC是正方形,

          ∴∠OAC=90°,

          AM=

          由折疊可知,OE=EM,

          AM=x,則EM=OE=2x,

          ,

          OA=4,

          ∴AE=4-2x

          Rt△AEM中,AM2+AE2=EM2,

          ,解得:,(舍去)

          OE=2x=,

          ;

          )∵AC=4,

          ∴當點落在的中點時,AM=MC=2,

          AE=a,則OE=EM=4-a,

          則在RtAEM中,AM2+AE2=EM2

          ,解得:,

          OE=,

          )不變,的周長為8,

          如圖,連接OM,OP,過點OOQ⊥MP于點Q

          由折疊可知,∠EMP=∠AOB=90°,OE=EM,

          ∴∠EOM=∠EMO,

          90°-EOM=90°-∠EMO,即∠MOB=∠OMP,

          又∵正方形AOBC中,AC∥OB,

          ∴∠AMO=∠MOB,

          ∴∠AMO=∠OMP,

          在△AMO與△QMO中,

          OAM=∠OQM=90°,∠AMO=∠OMQ,OM=OM,

          ∴△AMO≌△QMOAAS),

          AM=QM,AO=QO

          又∵AO=BO,

          QO=BO

          ∴在Rt△QOPRt△BOP中,

          OP=OP,QO=BO,

          Rt△QOPRt△BOPHL),

          QP=BP,

          的周長=MC+PC+MP

          =MC+PC+MQ+QP

          =MC+AM+PC+BP

          =AC+BC

          =8

          ∴隨著點邊上位置的變化,的周長不變,周長為8

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】據交管部門統(tǒng)計,高速公路超速行駛是引發(fā)交通事故的主要原因.我縣某校數(shù)學課外小組的幾個同學想嘗試用自己所學的知識檢測車速,渝黔高速公路某路段的限速是:每小時80千米(即最高時速不超過80千米),如圖,他們將觀測點設在到公路l的距離為0.1千米的P處.這時,一輛轎車由綦江向重慶勻速直線駛來,測得此車從A處行駛到B處所用的時間為3秒(注:3秒=小時),并測得∠APO59°,∠BPO45°.試計算AB并判斷此車是否超速?(精確到0.001).(參考數(shù)據:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某次數(shù)學測驗中,一道題滿分3分,老師評分只給整數(shù),即得分只能為0分,1分,2分,3分.李老師為了了解學生得分情況和試題的難易情況,對初三(1)班所有學生的試題進行了分析整理,并繪制了兩幅尚不完整的統(tǒng)計圖,如圖所示.

          解答下列問題:

          1m= n= ,并補全條形統(tǒng)計圖;

          2)在初三(1)班隨機抽取一名學生的成績,求抽中的成績?yōu)榈梅直姅?shù)的概率;

          3)根據右側小知識,通過計算判斷這道題對于該班級來說,屬于哪一類難度的試題?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線上有一點,的橫坐標為1,過軸,與拋物線的另一個交點為,且,作軸,垂足為,拋物線與軸正半軸交于點,連結,交于點

          1)當時,①求點的坐標:②求的面積:

          2)當是以為腰的等腰三角形時,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,點到直線的距離即為點到直線的垂線段的長.

          1)如圖1,取點M10),則點M到直線lyx1的距離為多少?

          2)如圖2,點P是反比例函數(shù)y在第一象限上的一個點,過點P分別作PMx軸,作PNy軸,記P到直線MN的距離為d0,問是否存在點P,使d0?若存在,求出點P的坐標,若不存在,請說明理由.

          3)如圖3,若直線ykx+m與拋物線yx24x相交于x軸上方兩點A、BAB的左邊).且∠AOB90°,求點P20)到直線ykx+m的距離最大時,直線ykx+m的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).

          (1)求直線與雙曲線的表達式;

          (2)過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知ABC,DE分別在邊AB、AC上,下列條件中,不能確定ADE∽△ACB的是( 。

          A. AED=∠B B. BDE+C180°

          C. ADBCACDE D. ADABAEAC

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】馬踏飛燕作為商丘的地標性雕塑被拆分為兩座雕塑,安放在緊鄰高速公路出站口的平原路和華商大道交叉口,不光臨近古城景區(qū),也靠近火神臺,恰恰實現(xiàn)了商丘市的城市文化宣傳的目的.人們來到商丘,一下高速,就看到商丘的地標,就能夠感受到商丘的火文化.

          某中學數(shù)學興趣小組準備測量安放后的雕塑相關數(shù)據,如圖,小明從A點測得火球最高點E的仰角為4°30′,此處恰好看不到馬踏飛燕雕塑的最高點F,小明向雕塑走140m到達點B,此時測得點E的仰角為45°.已知兩雕塑的距離為50m,求兩座雕塑EC、FD的高度.(AB、C、D在同一直線上)(精確到1m,參考值:sin4°30′≈0.07,cos4°30′≈0.99,tan4°30′≈0.08.)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,的對角線,,的邊,的長是三個連續(xù)偶數(shù),分別是邊,上的動點,且,將沿著折疊得到,連接.若為直角三角形時,的長為_______

          查看答案和解析>>

          同步練習冊答案