日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某學(xué)校準(zhǔn)備采購一批茶藝耗材和陶藝耗材.經(jīng)查詢,如果按照標(biāo)價購買兩種耗材,當(dāng)購買茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍時,購買茶藝耗材共需要18000元,購買陶藝耗材共需要12000元,且一套陶藝耗材單價比一套茶藝耗材單價貴150.

          1)求一套茶藝耗材、一套陶藝耗材的標(biāo)價分別是多少元?

          2)學(xué)校計(jì)劃購買相同數(shù)量的茶藝耗材和陶藝耗材.商家告知,因?yàn)橹苣陸c,茶藝耗材的單價在標(biāo)價的基礎(chǔ)上降價2元,陶藝素材的單價在標(biāo)價的基礎(chǔ)降價150元,該校決定增加采購數(shù)量,實(shí)際購買茶藝素材和陶藝素材的數(shù)量在原計(jì)劃基礎(chǔ)上分別增加了2.5%,結(jié)果在結(jié)算時發(fā)現(xiàn),兩種耗材的總價相等,求的值.

          【答案】1)購買一套茶藝耗材需要450元,購買一套陶藝耗材需要600元;(2的值為95.

          【解析】

          1)設(shè)購買一套茶藝耗材需要元,則購買一套陶藝耗材需要元,根據(jù)購買茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍列方程求解即可;

          2)設(shè)今年原計(jì)劃購買茶藝耗材和陶藝素材的數(shù)量均為,根據(jù)兩種耗材的總價相等列方程求解即可.

          1)設(shè)購買一套茶藝耗材需要元,則購買一套陶藝耗材需要元,根據(jù)題意,得.

          解方程,得.

          經(jīng)檢驗(yàn),是原方程的解,且符合題意

          .

          答:購買一套茶藝耗材需要450元,購買一套陶藝耗材需要600.

          2)設(shè)今年原計(jì)劃購買茶藝耗材和陶藝素材的數(shù)量均為,由題意得:

          整理,得

          解方程,得,(舍去).

          的值為95.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線的圖象與x軸交A-3,0),B1,0)兩點(diǎn),與y軸交于點(diǎn)C0,3),點(diǎn)D為拋物線的頂點(diǎn).

          1)求拋物線的解析式;

          2)設(shè)點(diǎn)T在第二象限的拋物線上,若其關(guān)于原點(diǎn)的對稱點(diǎn)也在拋物線上,求點(diǎn)T的坐標(biāo);

          3)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)AB重合),過Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過PPQAB交拋物線于點(diǎn)Q,過QQNx軸于N,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD的對角線ACBD交于OEF過點(diǎn)OAD,BC分別交于E,F,若AB4BC5,OE1.5,則四邊形EFCD的周長_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線的圖象與x軸的一個交點(diǎn)為B(5,0),另一個交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。

          (1)求直線BC與拋物線的解析式;

          (2)若點(diǎn)M是拋物線在x軸下方圖象上的動點(diǎn),過點(diǎn)M作MNy軸交直線BC于點(diǎn)N,求MN的最大值;

          (3)在(2)的條件下,MN取得最大值時,若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5x軸交于點(diǎn)D,直線y=-xx軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)BE關(guān)于x軸對稱,連接AB.

          (1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;

          (2)SSCDES四邊形ABDO,求S的值;

          (3)在求(2)S時,嘉琪有個想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉(zhuǎn)化為直接求AOC的面積,如此不更快捷嗎?但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)SAOCS,請通過計(jì)算解釋他的想法錯在哪里.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是用8個大小相同的小正方體搭成的幾何體,僅在該幾何體中取走一塊小正方體,使得到的新幾何體同時滿足兩個要求:(1)從正面看到的形狀和原幾何體從正面看到的形狀相同;(2)從左面看到的形狀和原幾何體從左面看到的形狀也相同.在不改變其它小正方體位置的前提下,可取走的小正方體的標(biāo)號是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將矩形ABCD繞點(diǎn)B順時針旋轉(zhuǎn)得到矩形A1BC1D1,點(diǎn)AC、D的對應(yīng)點(diǎn)分別為A1C1、D1

          1)當(dāng)點(diǎn)A1落在AC上時

          ①如圖1,若∠CAB60°,求證:四邊形ABD1C為平行四邊形;

          ②如圖2,AD1CB于點(diǎn)O.若∠CAB≠60°,求證:DOAO

          2)如圖3,當(dāng)A1D1過點(diǎn)C時.若BC5CD3,直接寫出A1A的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y()與甲出發(fā)的時間x()之間的關(guān)系如圖中折線OA-AB-BC-CD所示.

          (1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;

          (2)求乙的步行速度;

          (3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】蘇科版九年級下冊數(shù)學(xué)課本91頁有這樣一道習(xí)題:

          (1)復(fù)習(xí)時,小明與小亮、數(shù)學(xué)老師交流了自己的兩個見解,并得到了老師的認(rèn)可:

          ①可以假定正方形的邊長AB=4a,則AEDE=2a,DFa,利用兩邊分別成比例且夾角相等的兩個三角形相似可以證明ABEDEF;請結(jié)合提示寫出證明過程

          ②圖中的相似三角形共三對,而且可以借助于ABEDEF中的比例線段來證明EBF與它們相似證明過程如下:

          (2)交流之后,小亮嘗試對問題進(jìn)行了變化,在老師的幫助下,提出了新的問題,請你解答:

          已知:如圖,在矩形ABCD中,EAD的中點(diǎn),EFECABF,連結(jié)FC

          ABAE

          ①求證:AEFECF

          ②設(shè)BC=2,ABa,是否存在a值,使得AEFBFC相似.若存在,請求出a的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案