日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=-x2+(m-4)x+2m+4與x軸交于點A(x1,0)、B(x2,0)兩點,與y軸交于點C,且x1<x2,x1+2x2=0.若點A關(guān)于y軸的對稱點是點D.
          (1)求過點C、B、D的拋物線的解析式;
          (2)若P是(1)中所求拋物線的頂點,H是這條拋物線上異于點C的另一點,且△HBD與△CBD的面積相等,求直線PH的解析式.
          【答案】分析:(1)因為二次函數(shù)的二次項系數(shù)a=-1<0,故拋物線開口向下,由圖象于x軸有兩個交點可知,拋物線頂點的縱坐標大于0,令y=0,即-x2+(m-4)x+2m+4=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系,及二次函數(shù)圖象的特點列出方程及不等式組,即可求出A,B,C三點的坐標.由點A與點D關(guān)于y軸對稱,可求出D點的坐標,用待定系數(shù)法即可求出經(jīng)過C、B、D的拋物線的解析式.
          (2)根據(jù)(1)中所得拋物線的解析式可求出拋物線的頂點坐標P,因為△HBD與△CBD同底,且其面積相等,故設(shè)點H的坐標為H(x,y),則|y|=8,因為拋物線的頂點坐標為P(-1,9),所以點H只能在x軸的上方,故y=8,代入(1)中所得拋物線的解析式即可求出H點的坐標,再用待定系數(shù)法即可求出直線PH的解析式.
          解答:解:(1)由題意得:

          由①②得:x1=2m-8,x2=-m+4,
          將x1、x2代入③得:(2m-8)(-m+4)=-2m-4,
          整理得:m2-9m+14=0.
          ∴m1=2,m2=7(2分)
          ∵x1<x2
          ∴2m-8<-m+4
          ∴m<4
          ∴m2=7(舍去)(3分)
          ∴x1=-4,x2=2,點C的縱坐標為:2m+4=8
          ∴A、B、C三點的坐標分別是A(-4,0)、B(2,0)、C(0,8)(4分)
          又∵點A與點D關(guān)于y軸對稱
          ∴D(4,0)(5分)
          設(shè)經(jīng)過C、B、D的拋物線的解析式為:y=a(x-2)(x-4)(6分)
          將C(0,8)代入上式得:8=a(0-2)(0-4)
          ∴a=1,
          ∴所求拋物線的解析式為:y=x2-6x+8.(7分)

          (2)∵y=x2-6x+8=(x-3)2-1,
          ∴頂點P(3,-1)(8分)
          設(shè)點H的坐標為H(x,y
          ∵△BCD與△HBD的面積相等
          ∴|y|=8
          ∵點H只能在x軸的上方,
          故y=8
          將y=8代入y=x2-6x+8中得:x=6或x=0(舍去)
          ∴H(6,8)(9分)
          設(shè)直線PH的解析式為:y=kx+b得:
          ,
          解得:,
          ∴直線PH的解析式為:y=3x-10.(12分)
          點評:此題比較復雜,綜合考查了二次函數(shù)與一元二次方程的關(guān)系,及二次函數(shù)與一次函數(shù)圖象上點的坐標特征,是一道難度適中的題目.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知拋物線y=x2-8x+c的頂點在x軸上,則c等于( 。
          A、4B、8C、-4D、16

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
          (1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
          (2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
          精英家教網(wǎng)(1)求b+c的值;
          (2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
          (3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
          (1)求b、c的值;
          (2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
          (3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

          查看答案和解析>>

          同步練習冊答案