日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,是等邊三角形,是直線上一點(diǎn),以為頂點(diǎn)做 交過(guò)且平行于的直線于,求證:;當(dāng)的中點(diǎn)時(shí),(如圖1)小明同學(xué)很快就證明了結(jié)論:他的做法是:取的中點(diǎn),連結(jié),然后證明 從而得到,我們繼續(xù)來(lái)研究:

          1)如圖2、當(dāng)DBC上的任意一點(diǎn)時(shí),求證:

          2)如圖3、當(dāng)DBC的延長(zhǎng)線上時(shí),求證:

          3)當(dāng)的延長(zhǎng)線上時(shí),請(qǐng)利用圖4畫(huà)出圖形,并說(shuō)明上面的結(jié)論是否成立(不必證明).

          【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(4)見(jiàn)解析,,仍成立

          【解析】

          1)在AB上截取AF=DC,連接FD,證明BDF是等邊三角形,得出∠BFD=60°,證出∠FAD=CDE,由ASA證明AFD≌△DCE,即可得出結(jié)論;

          2)在BA的延長(zhǎng)線上截取AF=DC,連接FD,證明BDF是等邊三角形得出∠F=60°,證出∠FAD=CDE,由ASA證明AFD≌△DCE,即可得出結(jié)論;

          3)在AB的延長(zhǎng)線上截取AF=DC,連接FD,證明BDF是等邊三角形,得出∠BFD=60°,證出∠FAD=CDE,由ASA證明AFD≌△DCE,即可得出結(jié)論.

          1)證明:在AB上截取AF=DC,連接FD,如圖所示:

          ∵△ABC是等邊三角形,

          AB=BC,∠B=60°,

          又∵AF=DC,

          BF=BD

          ∴△BDF是等邊三角形,

          ∴∠BFD=60°,

          ∴∠AFD=120°,

          又∵ABCE,

          ∴∠DCE=120°=AFD

          而∠EDC+ADE=ADC=FAD+BADE=B=60°,

          ∴∠FAD=CDE

          AFDDCE

          ,

          ∴△AFD≌△DCEASA),

          AD=DE;

          2)證明:在BA的延長(zhǎng)線上截取AF=DC,連接FD,如圖所示:

          ∵△ABC是等邊三角形,

          AB=BC,∠B=60°,

          又∵AF=DC

          BF=BD,

          ∴△BDF是等邊三角形,

          ∴∠F=60°,

          又∵ABCE,

          ∴∠DCE=60°=F,

          而∠FAD=B+ADB,∠CDE=ADE+ADB,

          又∵∠ADE=B=60°,

          ∴∠FAD=CDE

          AFDDCE中,

          ∴△AFD≌△DCEASA),

          AD=DE

          3)解:AD=DE仍成立.理由如下:

          AB的延長(zhǎng)線上截取AF=DC,連接FD,如圖所示:

          ∵△ABC是等邊三角形,

          AB=BC,∠ABC=60°,

          ∴∠FAD+ADB=60°,

          又∵AF=DC,

          BF=BD,

          ∵∠DBF=ABC=60°

          ∴△BDF是等邊三角形,

          ∴∠AFD=60°,

          又∵ABCE,

          ∴∠DCE=ABC=60°,

          ∴∠AFD=DCE,

          ∵∠ADE=CDE+ADB=60°

          ∴∠FAD=CDE

          AFDDCE中,

          ∴△AFD≌△DCEASA),

          AD=DE

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)P(﹣3a﹣4,2+a),解答下列各題:

          (1)若點(diǎn)P在x軸上,則點(diǎn)P的坐標(biāo)為P   

          (2)若Q(5,8),且PQy軸,則點(diǎn)P的坐標(biāo)為P   ;

          (3)若點(diǎn)P在第二象限,且它到x軸、y軸的距離相等,求a2018+2018的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,BDABC的中線,ABD的周長(zhǎng)比BCD的周長(zhǎng)多2 cm.ABC的周長(zhǎng)為18 cm,且AC4 cm,求ABBC的長(zhǎng)..

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,CDCE分別是ABC的高和角平分線.

          1)若A=30°B=50°,求ECD的度數(shù);

          2)試用含有AB的代數(shù)式表示ECD(不必證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在四邊形中,邊上一點(diǎn),點(diǎn)出發(fā)以秒的速度沿線段運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),沿線段、射線運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到,兩點(diǎn)都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒):

          1)當(dāng)的速度相同,且時(shí),求證:

          2)當(dāng)的速度不同,且分別在上運(yùn)動(dòng)時(shí)(如圖1),若全等,求此時(shí)的速度和值;

          3)當(dāng)運(yùn)動(dòng)到上,運(yùn)動(dòng)到射線上(如圖2),若的速度為秒,是否存在恰當(dāng)?shù)倪?/span>的長(zhǎng),使在運(yùn)動(dòng)過(guò)程中某一時(shí)刻剛好全等,若存在,請(qǐng)求出此時(shí)的值和邊的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量ym3)與放水時(shí)間t(分)有如下關(guān)系:

          放水時(shí)間(分)

          1

          2

          3

          4

          水池中水量(m3

          38

          36

          34

          32

          下列結(jié)論中正確的是( 。

          A. yt的增加而增大

          B. 放水時(shí)間為15分鐘時(shí),水池中水量為8m3

          C. 每分鐘的放水量是2m3

          D. yt之間的關(guān)系式為y40t

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn),以O為圓心,OA為半徑作,交y軸于點(diǎn)C,直線l:經(jīng)過(guò)點(diǎn)C.

          設(shè)直線l的另一個(gè)交點(diǎn)為如圖,求弦CD的長(zhǎng);

          將直線l向上平移2個(gè)單位,得直線m,如圖2,求證:直線m相切;

          的前提下,設(shè)直線m切于點(diǎn)P,Q上一動(dòng)點(diǎn),過(guò)點(diǎn)P,交直線QA于點(diǎn)如圖,則的最大面積為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一茶葉專賣(mài)店經(jīng)銷(xiāo)某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷(xiāo)售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷(xiāo)一段時(shí)間后得到如下數(shù)據(jù):

          銷(xiāo)售單價(jià)x(元/kg)

          120

          130

          180

          每天銷(xiāo)量y(kg)

          100

          95

          70

          設(shè)y與x的關(guān)系是我們所學(xué)過(guò)的某一種函數(shù)關(guān)系.

          (1)直接寫(xiě)出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;

          (2)當(dāng)銷(xiāo)售單價(jià)為多少時(shí),銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,ABCD,EF分別交AB、CD于點(diǎn)EF,EG平分∠AEFFH平分∠EFD,求證:EGFH

          證明:∵ABCD   ),

          ∴∠AEF=∠EFD   ),

          EG平分∠AEFFH平分∠EFD   ),

          ∴∠   AEF,

             EFD(角平分線定義),

          ∴∠   =∠   

          EGFH   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案