日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)P.⊙O2的弦AB切⊙O1于點(diǎn)C,連接PA、PB,PC的延長(zhǎng)線交⊙O2于點(diǎn)D.求證:(1)∠APC=∠BPC;
          (2)PC2+AC•BC=PA•PB.

          證明:①過點(diǎn)P作兩圓公切線MN,連接EC,AD,
          則∠MPA=∠PCE=∠D.
          ∴EC∥AD.
          ∴∠ACE=∠CAD.
          ∵AB是⊙O1的切線,
          ∴∠ACE=∠APC.
          ∵∠CAD=∠BPC,
          ∴∠APC=∠BPC.

          ②∵∠APC=∠BPC,∠B=∠D,
          ∴△PBC∽△PDA,
          ∴PB:PD=PC:PA,
          ∴PB•PA=PC•PD=PC(PC+CD)=PC2+PC•CD,
          ∵PC•PD=AC•BC,
          ∴PC2+AC•BC=PA•PB.
          分析:①首先過點(diǎn)P作兩圓公切線MN,連接EC,AD,由弦切角定理,可得∠MPA=∠PCE=∠D,則可證得EC∥AD,可得∠ACE=∠CAD.由圓周角定理與弦切角定理,證得∠APC=∠BPC;
          ②易證得△PBC∽△PDA,由相似三角形的對(duì)應(yīng)邊成比例,可得PB•PA=PC•PD=PC(PC+CD)=PC2+PC•CD,又由相交弦定理,證得PC•PD=AC•BC,則可證得結(jié)論.
          點(diǎn)評(píng):此題考查了相切兩圓的性質(zhì)、弦切角定理、相交弦定理以及相似三角形的判定與性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          12、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,直線AB過點(diǎn)P交⊙O1于A,交⊙O2于B,點(diǎn)C、D分別為⊙O1、⊙O2上的點(diǎn),且∠ACP=65°,則∠BDP=
          65
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線,A、B是切點(diǎn),DF經(jīng)過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過M點(diǎn),連接AD.
          (1)求證:AD∥BC;
          (2)求證:MF2=AF•BF;
          (3)如果⊙O1的直徑長(zhǎng)為8,tan∠ACB=
          34
          ,求⊙O2的直徑長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,⊙O1與⊙O2相交于C、D兩點(diǎn),⊙O1的割線PAB與DC的延長(zhǎng)線交于點(diǎn)P,PN與⊙O2相切于點(diǎn)N,若PB=10,AB=6,則PN=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖:⊙O1與⊙O2相交于AB兩點(diǎn),過點(diǎn)A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
          求證:CE∥DF.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案