日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在中,,,點(diǎn)延長(zhǎng)線上一點(diǎn),連接,過分別作,垂足為,交于點(diǎn),作,垂足為,交于點(diǎn)

          1)求證:

          2)如圖,點(diǎn)的延長(zhǎng)線上,且,連接并延長(zhǎng)交于點(diǎn),求證:;

          3)在(2)的條件下,當(dāng)時(shí),請(qǐng)直接寫出的值為____________________

          【答案】1)證明見解析;(2)證明見解析;(3

          【解析】

          1)利用AAS證明△APN≌△CPQ,可得AN=CQ;

          2)如圖2,連接BQ,證明△DBQ≌△EANSAS),可得DQ=EN

          3)設(shè)AE=2x,AB=3x,則BD=2x,DCx,作輔助線,構(gòu)建直角三角形和相似三角形,證明△AHE∽△AMD和△DQA∽△ANC,得,設(shè)AH=8m,AM=20mAN=17m,再證明△EHN∽△FMN,即可得出結(jié)論.

          1)如圖1

          APBC,AMCD,∴∠APN=CPQ=90°,∴∠PNA+NAP=NAP+CQP=90°,∴∠PNA=CQP

          AB=AC,∠BAC=90°,∴AP=PC,∴△APN≌△CPQAAS),∴AN=CQ

          2)如圖2,連接BQ,由(1)知:APBC的垂直平分線,∴BQ=CQ

          AN=CQ,∴AN=BQ

          BQ=QC,∴∠QBC=QCB=NAP

          ∵∠PBA=PAB=45°,∴∠QBA=BAN,∴∠DBQ=NAE

          BD=AE,∴△DBQ≌△EANSAS),∴DQ=EN

          3)∵AEAB,即,∴設(shè)AE=2x,則AB=3x,BD=2x,DCx,如圖3,過EEHAM,交MA的延長(zhǎng)線于H,∴∠H=AMD=90°,∴EHDC,∴∠HEA=CDA,∴△AHE∽△AMD,∴

          ∵∠MAC=CDA,∠ACN=DAQ=45°,∴△DQA∽△ANC,∴,由(2)知:CQ=AN,∴,∴AN=CQx,SADC,AM,∴,∴設(shè)AH=8m,AM=20m,AN=17m,則MN=3m

          EHFM,∴△EHN∽△FMN,∴

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】.某商場(chǎng)為緩解停車難問題,擬建造地下停車庫(kù),如圖是該地下停車庫(kù)坡道入口的設(shè)計(jì)示意圖,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根據(jù)規(guī)定,地下停車庫(kù)坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長(zhǎng)就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長(zhǎng)作為限制的高度.小明和小亮誰(shuí)說得對(duì)?請(qǐng)你判斷并計(jì)算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)CBD的平行線,過點(diǎn)DAC的平行線,兩線交于點(diǎn)P

          求證:四邊形CODP是菱形.

          AD6,AC10,求四邊形CODP的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(14)、Q(mn)在函數(shù)y(k0)的圖象上,當(dāng)m1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A、B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、DQDPA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積(  )

          A. 增大 B. 減小

          C. 先減小后增大 D. 先增大后減小

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,垂足為,,點(diǎn)上,分別是的中點(diǎn),求的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5x5.5,另外每天還需支付其他各項(xiàng)費(fèi)用80元.

          銷售單價(jià)x(元)

          3.5

          5.5

          銷售量y(袋)

          280

          120

          1)請(qǐng)直接寫出yx之間的函數(shù)關(guān)系式;

          2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?

          3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線ABy軸交于點(diǎn)C.

          (1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

          (2)AOC的面積;

          (3)求不等式kx+b-<0的解集(直接寫出答案).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD的對(duì)角線ACBD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,CBF=DCB

          1)求證:四邊形DBFC是平行四邊形;

          2)如果BC平分∠DBF,CDB=45°,BD=2,求AC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,拋物線mx軸于點(diǎn)A、點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)將拋物線m繞點(diǎn)B旋轉(zhuǎn),得到新的拋物線n,它的頂點(diǎn)為,與x軸的另一個(gè)交點(diǎn)為

          當(dāng),時(shí),求拋物線n的解析式;

          求證:四邊形是平行四邊形;

          當(dāng)時(shí),四邊形可能是矩形嗎?若能,請(qǐng)求出拋物線m的解析式;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案