日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,梯形OABC中,CB∥OA,O為坐標(biāo)原點(diǎn),A(4,0),C(0,4),tan∠BAO=2,動點(diǎn)P從點(diǎn)C出發(fā),以每秒1個單位的速度沿線段CB運(yùn)動到點(diǎn)B后,再以每秒
          5
          個單位的速度沿線段BA運(yùn)動,到點(diǎn)A停止,過點(diǎn)P作PQ⊥x軸于Q,以PQ為一邊向左作正方形PQRS,設(shè)運(yùn)動時間為t(秒),正方形PQRS與梯形ABCD重疊的面積為S(平方單位).
          (1)求點(diǎn)B的坐標(biāo).
          (2)求S與t的函數(shù)關(guān)系式.
          (3)求(2)中的S的最大值.
          (4)連接OB,OB中點(diǎn)為M,正方形PQRS在變化過程中,使點(diǎn)M在正方形PQRS的邊上的t值為
          1秒或3秒
          1秒或3秒
          分析:(1)過B作BD垂直于x軸于D點(diǎn),由C的坐標(biāo)得出OC的長,再由A的坐標(biāo)得出OA的長,根據(jù)四邊形BDOC為矩形,得到對邊相等,即BC=OD,BD=OC,在直角三角形ABD中,利用銳角三角函數(shù)定義表示出tan∠BAO,根據(jù)tan∠BAO=2及BD的長,求出AD的長,同時利用勾股定理求出AB的長,由OA-AD求出OD的長,由BD與OD的長,及B在第一象限,寫出B的坐標(biāo)即可;
          (2)根據(jù)P的位置分三種情況考慮:(i)當(dāng)P在BC邊上時,正方形PQRS與梯形ABCD重疊的面積為矩形PQOC的面積,而PQ=OC=4,CP=t,表示出S與t的關(guān)系式,并寫出此時t的范圍;(ii)當(dāng)P在AB邊上,且S在y軸左側(cè)時,如圖所示,P在BC邊上運(yùn)動的時間是2秒,P在BA邊上運(yùn)動由時間(t-2)秒,根據(jù)P每秒
          5
          個單位的速度沿線段BA運(yùn)動,利用路程=時間×速度,表示出BP的長,由AB-BP表示出AP,在直角三角形APQ中,由tan∠BAO=2,設(shè)AQ=x,則有PQ=2x,利用勾股定理表示出AP,列出關(guān)于x的方程,求出方程的解表示出AQ與PQ,由OA-AQ求出OQ的長,由矩形的兩條邊OQ與PQ的乘積即可得出S與t的關(guān)系式,并寫出此時t的范圍;當(dāng)P在AB邊上,且S在y軸右側(cè)時,如圖所示,此時重合部分為正方形PQRS,由表示出的PQ,即可表示出此時S與t的關(guān)系式,并求出此時t的范圍;
          (3)由(2)得出的S與t的關(guān)系式,利用一次函數(shù)及二次函數(shù)的性質(zhì)求出三個函數(shù)的最大值,比較后即可求出S的最大值;
          (4)分兩種情況考慮:(i)當(dāng)P在BC邊上時,若PQ過M點(diǎn),由M為OB的中點(diǎn),得到BM=OM,再由BC與OA平行,利用兩直線平行得到兩對內(nèi)錯角相等,利用AAS可得出三角形PBM與三角形OMQ全等,利用全等三角形的對應(yīng)邊相等得到PB=OQ,而OQ=CP=t,得到CP=PB,PB=CB-CP=2-t,列出關(guān)于t的方程,求出方程的解即可得到t的值;(ii)當(dāng)P在AB邊上運(yùn)動時,此時S與M重合,由M為OB的中點(diǎn),MP平行于OA,利用平行線等分線段定理得到P為AB的中點(diǎn),即MP為三角形AOB的中位線,利用中位線定理得到MP為OA的一半,求出MP的長,即為此時正方形的邊長,由PQ=8-2t,令8-2t等于求出的邊長列出關(guān)于t的方程,求出方程的解即可得到此時t的值.
          解答:解:(1)過B作BD⊥x軸于D點(diǎn),如圖所示:

          由C(0,4),得到OC=4,由A(4,0),得到OA=4,
          ∵四邊形BDOC為矩形,∴BC=OD,BD=OC=4,
          在Rt△ABD中,tan∠BAO=
          BD
          AD
          =2,AB=
          BD2+AD2
          =2
          5
          ,
          解得:AD=2,
          ∴OD=OA-AD=4-2=2,
          ∴B(2,4);
          (2)分三種情況考慮:
          (i)當(dāng)P點(diǎn)在BC邊上運(yùn)動時,由題意得:CP=t,
          又四邊形PQOC為矩形,∴PQ=OC=4,
          則正方形PQRS與梯形ABCD重疊的面積為S=CP•PQ=4t(0≤t≤2);
          (ii)當(dāng)P在BA邊上運(yùn)動時(S在y軸左側(cè)),如圖所示:

          由題意得:BP=
          5
          (t-2),又AB=2
          5
          ,
          ∴AP=AB-BP=2
          5
          -
          5
          (t-2)=
          5
          (4-t),
          在Rt△APQ中,tan∠BAO=
          PQ
          AQ
          =2,設(shè)AQ=x,則PQ=2x,
          根據(jù)勾股定理得:AP=
          5
          x,又AP=
          5
          (4-t),
          5
          x=
          5
          (4-t),即x=4-t,
          ∴AQ=4-t,PQ=8-2t,
          ∴OQ=OA-AQ=4-(4-t)=t,
          則正方形PQRS與梯形ABCD重疊的面積為S=OQ•PQ=t(8-2t)=-2t2+8t(2≤t<
          8
          3
          );
          (iii)當(dāng)P在BA邊上運(yùn)動時(S在y軸右側(cè)),如圖所示:

          同理得到PQ=8-2t,此時重合部分為正方形PQRS,
          則S=PQ2=(8-2t)2=4t2-32t+64(
          8
          3
          ≤t<4);
          (3)由(2)列出的函數(shù)關(guān)系式,分三種情況考慮:
          (i)S=4t(0≤t≤2),由一次函數(shù)為增函數(shù),故當(dāng)t=2時,S最大=8;
          (ii)S=-2t2+8t(2<t<
          8
          3
          ),此時S沒有最大值;
          (iii)S=4t2-32t+64(
          8
          3
          ≤t<4),由二次函數(shù)性質(zhì)得:當(dāng)t=
          8
          3
          時,S=
          64
          9
          ,
          64
          9
          <8,得到問題(2)中的S的最大值是8;
          (4)分兩種情況考慮:
          (i)當(dāng)P在BC邊上,且PQ過M點(diǎn)時,如圖所示:

          ∵M(jìn)為OB中點(diǎn),
          ∴BM=OM,
          又BC∥OA,
          ∴∠BPM=∠MQO,∠PBM=∠QOM,
          ∴△BPM≌△OQM(AAS),
          ∴PB=OQ,又OQ=CP=t,CB=2,
          ∴PB=2-t,即2-t=t,
          解得:t=1;
          (ii)當(dāng)P在AB邊上,且SR過M點(diǎn)時(此時S與M重合),如圖所示:

          ∵M(jìn)為OB的中點(diǎn),MP∥OA,
          ∴P為AB中點(diǎn),即MP為△AOB的中位線,
          ∴MP=
          1
          2
          OA=2,即正方形PQRS的邊長為2,
          由PQ=8-2t,得到8-2t=2,
          解得:t=3,
          綜上,點(diǎn)M在正方形PQRS的邊上的t值為1秒或3秒.
          故答案為:1秒或3秒
          點(diǎn)評:此題屬于相似形綜合題,涉及的知識有:全等三角形的判定與性質(zhì),坐標(biāo)與圖形性質(zhì),銳角三角函數(shù)定義,勾股定理,正方形的性質(zhì),三角形的中位線定理,以及一次函數(shù)與二次函數(shù)的性質(zhì),利用了數(shù)形結(jié)合及分類討論的數(shù)學(xué)思想,是一道較難的壓軸題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時從原點(diǎn)出發(fā),分別作勻速運(yùn)動,其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動,速度為每秒1個單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.設(shè)P從出發(fā)起運(yùn)動了t秒.
          (1)如果點(diǎn)Q的速度為每秒2個單位,
          ①試分別寫出這時點(diǎn)Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
          ②求t為何值時,PQ∥OC?
          (2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,
          ①試用含t的代數(shù)式表示這時點(diǎn)Q所經(jīng)過的路程和它的速度;
          ②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求精英家教網(wǎng)出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時從原點(diǎn)出發(fā),分別作勻速運(yùn)動,點(diǎn)P沿OA以每秒1個單位向終點(diǎn)A運(yùn)動,點(diǎn)Q沿OC、CB以每秒2個單位向終點(diǎn)B運(yùn)動.當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.
          (1)設(shè)從出發(fā)起運(yùn)動了x秒,且x>2.5時,Q點(diǎn)的坐標(biāo);
          (2)當(dāng)x等于多少時,四邊形OPQC為平行四邊形?
          (3)四邊形OPQC能否成為等腰梯形?說明理由;
          (4)設(shè)四邊形OPQC的面積為y,求出當(dāng)x>2.5時y與x的函數(shù)關(guān)系式;并求出y的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,梯形OABC中,BC∥AO,∠BAO=90°,B(-3
          3
          ,3),直線OC的解析式為y=-
          3
          x,將△OBC繞點(diǎn)C順時針旋轉(zhuǎn)60°后,O到O1,B到B1,得△O1B1C.
          (1)求證:點(diǎn)O1在x軸上;
          (2)將點(diǎn)O1運(yùn)動到點(diǎn)M(-4
          3
          ,0),求∠B1MC的度數(shù);
          (3)在(2)的條件下,將直線MC向下平移m個單位長度,設(shè)直線MC與線段AB交于點(diǎn)P,與線段OC的交于點(diǎn)Q,四邊形OAPQ的面積為S,求S與m的函數(shù)關(guān)系式,并求出m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為
          (14,0)、(14,3)、(4,3).點(diǎn)P、Q同時從原點(diǎn)出發(fā),分別作勻速運(yùn)動,點(diǎn)P沿OA以每秒1個單位向終點(diǎn)A運(yùn)動,點(diǎn)Q沿OC、CB以每秒2個單位向終點(diǎn)B運(yùn)動.當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.
          (1)設(shè)從出發(fā)起運(yùn)動了x秒,當(dāng)x等于多少時,四邊形OPQC為平行四邊形?
          (2)四邊形OPQC能否成為等腰梯形?說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案