日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】△ABC中,BC=AC,∠C=90°,直角頂點(diǎn)Cx軸上,一銳角頂點(diǎn)By軸上.

          1)如圖AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(﹣3,1),求點(diǎn)B的坐標(biāo).

          2)如圖,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,ACy軸交于點(diǎn)D,過點(diǎn)AAE⊥y軸于E,請(qǐng)猜想BDAE有怎樣的數(shù)量關(guān)系,并證明你的猜想.

          3)如圖,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過程中,請(qǐng)猜想OC,AF,OB之間有怎樣的關(guān)系(直接寫出結(jié)論,不需要證明)

          【答案】1)(0,2);(2BD=2AF;(3OC=OB+AF.

          【解析】試題分析:1)只要求出RtADCRtCOB即可求.

          2)先說明BDAE有怎樣的數(shù)量關(guān)系,然后針對(duì)得到的數(shù)量關(guān)系,作出合適的輔助線,畫出相應(yīng)的圖形,根據(jù)等腰三角形底邊上的高、底邊上的中線、頂角的平分線三線合一,可以最終證得所要說明的數(shù)量關(guān)系;

          3)先猜想OCAF、OB之間的關(guān)系,然后根據(jù)猜想作出合適的輔助線,畫出相應(yīng)的圖形,然后證明所要證明的結(jié)論即可.

          試題解析:(1)∵點(diǎn)C坐標(biāo)是(1,0),點(diǎn)A的坐標(biāo)是(3,1)

          AD=OC,

          RtADCRtCOB, ,

          RtADCRtCOB(HL)

          OB=CD=2,

          ∴點(diǎn)B的坐標(biāo)是(0,2);

          (2)BD=2AF

          理由:作AE的延長線交BC的延長線于點(diǎn)F,如下圖所示,

          ABC是等腰直角三角形,BC=AC,直角頂點(diǎn)Cx軸上,AEy軸于E,

          ∴∠BCA=ACF=90°,AED=90°,

          ∴∠DBC+BDC=90°DAE+ADE=90°,

          ∵∠BDC=ADE

          ∴∠DBC=FAC,

          BDCAFC中,

          ,

          BDCAFC(ASA)

          BD=AF,

          BEAE,y軸恰好平分∠ABC

          AF=2AE,

          BD=2AF

          (3)OC=OB+AF,

          證明:作AEOC于點(diǎn)E,如下圖所示,

          AEOC,AFy軸,

          ∴四邊形OFAE是矩形,AEC=90°,

          AF=OE,

          ABC是等腰直角三角形,BC=AC直角頂點(diǎn)Cx軸上,BOC=90°

          ∴∠BCA=90°,

          ∴∠BCO+CBO=90°BCO+ACE=90°,

          ∴∠CBO=ACE,

          BOCCEO中,

          ,

          BOCCEO(AAS)

          OB=CE

          OC=OE+EC,OE=AF,OB=EC

          OC=OB+AF.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,左面的幾何體叫三棱柱,它有五個(gè)面,條棱,個(gè)頂點(diǎn),中間和右邊的幾何體分別是四棱柱和五棱柱.

          四棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;

          五棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;

          你能由此猜出,六棱柱、七棱柱各有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?

          棱柱有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,B=90°,AC=60cm,A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DFBC于點(diǎn)F,連接DE,EF.

          (1)求證:AE=DF;

          (2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

          (3)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列調(diào)查方式合適的是(

          A. 為了了解外地游客對(duì)岳陽樓新景區(qū)的感受,小華利用周日在汴河街隨機(jī)采訪了名武漢游客

          B. 為了了解全校學(xué)生用于做數(shù)學(xué)作業(yè)的時(shí)間,小民同學(xué)在網(wǎng)上通過位好友做了調(diào)查

          C. 為了了解嫦娥一號(hào)衛(wèi)星零部件的狀況,檢測(cè)人員采用了普查的方式

          D. 為了了解全國青少年兒童在陽光體育運(yùn)動(dòng)啟動(dòng)后的睡眠時(shí)間,統(tǒng)計(jì)人員采用了普查的方式

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為(

          A.x=1
          B.x=﹣1
          C.x1=1,x2=﹣3
          D.x1=1,x2=﹣4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)計(jì)調(diào)查問卷時(shí),下列提問是否合適?如果不合適的話應(yīng)該怎樣改進(jìn)?

          (1)你上學(xué)時(shí)使用的交通工具是

          .汽車.摩托車.步行.其他

          (2)你對(duì)老師的教學(xué)滿意嗎?

          .比較滿意.滿意.非常滿意.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】是一塊邊長為1,周長記為P1的正三角形紙板,沿圖的底邊剪去一塊邊長為的正三角形紙板后得到圖,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪如圖掉正三角形紙板邊長的)后,得圖③,④,…,記第n(n≥3)塊紙板的周長為Pn,則P2018﹣P2017的值為( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,P是等邊△ABC內(nèi)的一點(diǎn),且PA=5,PB=4,PC=3,將△APB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到△CQB.求:

          (1)點(diǎn)P與點(diǎn)Q之間的距離;
          (2)求∠BPC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BEDF的是( 。

          A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

          查看答案和解析>>

          同步練習(xí)冊(cè)答案