日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,兩個(gè)等腰直角三角板ABC和DEF有一條邊在同一條直線l上,DE=2,AB=1.將直線EB繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)45°,交直線AD于點(diǎn)M.將圖1中的三角板ABC沿直線l向右平移,設(shè)C、E兩點(diǎn)間的距離為k.
          解答問題:
          (1)①當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),如圖2所示,可得
          AM
          DM
          的值為
          1
          1
          ;②在平移過程中,
          AM
          DM
          的值為
          k
          2
          k
          2
          (用含k的代數(shù)式表示);
          (2)將圖2中的三角板ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),原題中的其他條件保持不變.當(dāng)點(diǎn)A落在線段DF上時(shí),如圖3所示,請(qǐng)補(bǔ)全圖形,計(jì)算
          AM
          DM
          的值;
          (3)將圖1中的三角板ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α度,0<α≤90,原題中的其他條件保持不變.計(jì)算
          AM
          DM
          的值(用含k的代數(shù)式表示).
          分析:(1)①根據(jù)題意可得EM垂直平分DF,直線AF∥EM,從而
          AM
          DM
          轉(zhuǎn)化為
          DO
          OF
          ,繼而得出結(jié)論;②仿照①的思路進(jìn)行求解即可;
          (2)先補(bǔ)全圖形,連接AE,分別求出AM及DM的值,然后可確定比值.
          (3)先畫出圖形,然后證明△ABG≌△CBE,繼而推出AG∥DE,△AGM∽△DEM,利用相似三角形的性質(zhì)即可得出答案.
          解答:解:(1)①如圖,

          ∵∠MEB=45°,∠AFB=45°,
          ∴EM垂直且平分DF,AF∥EM,
          AM
          DM
          =
          FO
          OD
          =1;
          ②如圖

          由①可得
          AM
          DM
          =
          HO
          OD
          =
          HO
          OF
          =
          EC
          EF
          =
          k
          2


          (2)連接AE,

          ∵△ABC,△DEF均為等腰直角三角形,DE=2,AB=1,
          ∴EF=2,BC=1,∠DEF=90°,∠4=∠5=45°
          ∴DF=2
          2
          ,AC=
          2
          ,∠EFB=90°,
          ∴DF=2AC,AD=
          2

          ∴點(diǎn)A為CD的中點(diǎn),
          ∴EA⊥DF,EA平分∠DEF,
          ∴∠MAE=90°,∠AEF=45°,AE=
          2

          ∵∠BEM=45°,
          ∴∠1+∠2=∠3+∠2=45°,
          ∴∠1=∠3,
          ∴△AEM∽△FEB,
          AM
          BF
          =
          AE
          EF
          ,
          ∴AM=
          2
          2
          ,
          ∴DM=AD-AM=
          2
          -
          2
          2
          =
          2
          2
          ,
          AM
          DM
          =1


          (3)過B作BE的垂線交直線EM于點(diǎn)G,連接AG、BG,

          ∴∠EBG=90°,
          ∵∠BEM=45°,
          ∴∠EGB=∠BEM=45°,
          ∴BE=BG,
          ∵△ABC為等腰直角三角形,
          ∴BA=BC,∠ABC=90°,
          ∴∠1=∠2,
          ∴△ABG≌△CBE,
          ∴AG=EC=k,∠3=∠4,
          ∵∠3+∠6=∠5+∠4=45°,
          ∴∠6=∠5,
          ∴AG∥DE,
          ∴△AGM∽△DEM,
          AM
          DM
          =
          AG
          DE
          =
          k
          2
          點(diǎn)評(píng):本題考查了相似形綜合題,涉及了相似三角形的判定與性質(zhì)、平行線的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì),考察的知識(shí)點(diǎn)比較多,難度較大,解答本題之前一定要將圖形畫出來,這樣可以使我們的思考方向更準(zhǔn)確一些,另外要求我們熟練掌握各個(gè)基礎(chǔ)知識(shí)點(diǎn)的內(nèi)容.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          30、如圖1,兩個(gè)不全等的等腰直角三角形OAB和OCD疊放在一起,并且有公共的直角頂點(diǎn)O.
          (1)在圖1中,你發(fā)現(xiàn)線段AC、BD的數(shù)量關(guān)系是
          相等
          ;直線AC、BD相交成角的度數(shù)是
          90°

          (2)將圖1的△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°角,在圖2中畫出旋轉(zhuǎn)后的△OAB.
          (3)將圖1中的△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)銳角,連接AC、BD得到圖3,這時(shí)(1)中的兩個(gè)結(jié)論是否成立?作出判斷并說明理由.若△OAB繞點(diǎn)O繼續(xù)旋轉(zhuǎn)更大的角時(shí),結(jié)論仍然成立嗎?作出判斷,不必說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•裕華區(qū)二模)如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來研究這三條線段之間的關(guān)系.
          (1)實(shí)驗(yàn)與操作:
          如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請(qǐng)?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長(zhǎng)的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
          (2)猜想與探究:
          如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
          我們來證明線段CD與線段CN相等.
          ∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
          ∴∠DAC=45°,∴∠DAC=∠CBA,
          又∵DA=NB,BC=AC,
          ∴△CAD≌△CBN.
          ∴CD=CN.

          請(qǐng)你繼續(xù)解答:
          ①線段MD與線段MN相等嗎?為什么?
          ②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
          (3)拓廣與運(yùn)用:
          如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長(zhǎng)的正方形的面積的和等于以MN為邊長(zhǎng)的正方形的面積?若能,請(qǐng)?jiān)趫D④中畫出點(diǎn)N的位置,并簡(jiǎn)要說明作法;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來研究這三條線段之間的關(guān)系.
          (1)實(shí)驗(yàn)與操作:
          如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請(qǐng)?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長(zhǎng)的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
          (2)猜想與探究:
          如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
          我們來證明線段CD與線段CN相等.
          ∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
          ∴∠DAC=45°,∴∠DAC=∠CBA,
          又∵DA=NB,BC=AC,
          ∴△CAD≌△CBN.
          ∴CD=CN.

          請(qǐng)你繼續(xù)解答:
          ①線段MD與線段MN相等嗎?為什么?
          ②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
          (3)拓廣與運(yùn)用:
          如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長(zhǎng)的正方形的面積的和等于以MN為邊長(zhǎng)的正方形的面積?若能,請(qǐng)?jiān)趫D④中畫出點(diǎn)N的位置,并簡(jiǎn)要說明作法;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年河北省石家莊市裕華區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來研究這三條線段之間的關(guān)系.
          (1)實(shí)驗(yàn)與操作:
          如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請(qǐng)?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長(zhǎng)的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
          (2)猜想與探究:
          如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
          我們來證明線段CD與線段CN相等.
          ∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
          ∴∠DAC=45°,∴∠DAC=∠CBA,
          又∵DA=NB,BC=AC,
          ∴△CAD≌△CBN.
          ∴CD=CN.

          請(qǐng)你繼續(xù)解答:
          ①線段MD與線段MN相等嗎?為什么?
          ②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
          (3)拓廣與運(yùn)用:
          如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長(zhǎng)的正方形的面積的和等于以MN為邊長(zhǎng)的正方形的面積?若能,請(qǐng)?jiān)趫D④中畫出點(diǎn)N的位置,并簡(jiǎn)要說明作法;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案