日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)系中,O為坐標(biāo)原點,點A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△精英家教網(wǎng)OAB,C為x軸正半軸上的一個動點(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點.
          (1)如圖,當(dāng)C點在x軸上運動時,若設(shè)AC=x,請用x表示線段AD的長.
          (2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
          (3)以線段BC為直徑作圓,圓心為點F,當(dāng)C點運動到何處時直線EF∥直線BO?這時⊙F和直線BO相切的位置關(guān)系如何?請給予說明.
          (4)G為CD與⊙F的交點,H為直線DF上的一個動點,連接HG、HC,求HG+HC的最小值,并將此最小值用x表示.
          分析:(1)由△OAB和△BCD都為等邊三角形,等邊三角形的邊長相等,且每一個內(nèi)角都為60°,得到∠OBA=∠DBC,等號兩邊都加上∠ABC,得到∠OBC=∠ABD,根據(jù)“SAS”得到△OBC≌△ABD,即可得到對應(yīng)邊AD與OC相等,由OC表示出AD即可;
          (2)隨著C點的變化,直線AE的位置不變.理由為:由(1)得到的兩三角形全等,得到∠BAD=∠BOC=60°,又等邊三角形BCD,得到∠BAO=60°,根據(jù)平角定義及對頂角相等得到∠OAE=60°,在直角三角形OAE中,由OA的長,根據(jù)tan60°的定義求出OE的長,確定出點E的坐標(biāo),設(shè)出直線AE的方程,把點A和E的坐標(biāo)代入即可確定出解析式;
          (3)由EA與OB平行,且EF也與OB平行,根據(jù)過直線外一點作已知直線的平行線有且只有一條,得到EF與EA重合,所以F為BC與AE的交點,又F為BC的中點,得到A為OC中點,由A的坐標(biāo)即可求出C的坐標(biāo);相切,理由是由F為等邊三角形BC邊的中點,根據(jù)“三線合一”得到DF與BC垂直,由EF與OB平行得到BF與OB垂直,得證;
          (4)根據(jù)等邊三角形的“三線合一”得到DF垂直平分BC,所以C與D關(guān)于DF對稱,所以GB為HC+HG的最小值,GB的求法是:由B,C及G三點在圓F圓周上,得到FB,F(xiàn)C及FG相等,利用一邊的中線等于這邊的一半得到三角形BCG為直角三角形,根據(jù)“三線合一”得到∠CBG為30°,利用cos30°和BC的長即可求出BG,而BC的長需要過B作BM垂直于x軸,根據(jù)等邊三角形的性質(zhì)求出BM及AM,表示出CM,在直角三角形BMC中,根據(jù)勾股定理表示出BC的長即可.
          解答:解:(1)∵△OAB和△BCD都為等邊三角形,
          ∴OB=AB,BC=BD,
          ∠OBA=∠DBC=60°,即∠OBA+∠ABC=∠DBC+∠ABC,
          ∴∠OBC=∠ABD,
          ∴△OBC≌△ABD,
          ∴AD=OC=1+x;

          (2)隨著C點的變化,直線AE的位置不變.理由如下:
          由△OBC≌△ABD,得到∠BAD=∠BOC=60°,
          又∵∠BAO=60°,∴∠DAC=60°,
          ∴∠OAE=60°,又OA=1,
          在直角三角形AOE中,tan60°=
          OE
          OA
          ,
          則OE=
          3
          ,點E坐標(biāo)為(0,-
          3
          ),A(1,0),
          設(shè)直線AE解析式為y=kx+b,把E和A的坐標(biāo)代入得:
          k+b=0
          b=-
          3
          ,
          解得:
          k=
          3
          b=-
          3
          ,
          所以直線AE的解析式為y=
          3
          x-
          3
          ;

          精英家教網(wǎng)(3)根據(jù)題意畫出圖形,如圖所示:
          ∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,
          則EF與EA所在的直線重合,∴點F為DE與BC的交點,
          又F為BC中點,∴A為OC中點,又AO=1,則OC=2,
          ∴當(dāng)C的坐標(biāo)為(2,0)時,EF∥OB;
          這時直線BO與⊙F相切,理由如下:
          ∵△BCD為等邊三角形,F(xiàn)為BC中點,
          ∴DF⊥BC,又EF∥OB,
          ∴FB⊥OB,即∠FBO=90°,
          故直線BO與⊙F相切;

          精英家教網(wǎng)(4)根據(jù)題意畫出圖形,如圖所示:
          由點B,點C及點G在圓F的圓周上得:FB=FC=FG,即FG=
          1
          2
          BC,
          ∴△CBG為直角三角形,又△BCD為等邊三角形,
          ∴BG為∠CBD的平分線,即∠CBG=30°,
          過點B作x軸的垂直,交x軸于點M,由△OAB為等邊三角形,
          ∴M為OA中點,即MA=
          1
          2
          ,BM=
          3
          2
          ,MC=AC+AM=x+
          1
          2

          在直角三角形BCM中,根據(jù)勾股定理得:
          BC=
          BM2+MC2
          =
          x2+x+1

          ∵DF垂直平分BC,∴B和C關(guān)于DF對稱,∴HC=HB,
          則HC+HG=BG,此時BG最小,
          在直角三角形BCG中,BG=BCcos30°=
          1
          2
          3x2+3x+3
          點評:此題綜合考查了等邊三角形的性質(zhì),直角三角形的性質(zhì),三角形全等的判定與性質(zhì)以及對稱的有關(guān)知識.此題的難點是(3)和(4)小問,(3)重點要確定出點F的特殊位置即直線ED與BC的交點,把EF平行OB作為已知條件,推導(dǎo)點C的位置;(4)解題的關(guān)鍵是利用等邊三角形“三線合一”的性質(zhì)找出C關(guān)于FD的對稱點為B,進(jìn)而得到BG為所求的最小值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          8、在直角坐標(biāo)系中,O為坐標(biāo)原點,已知點A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(2,2),點C是線段OA上的一個動點(不運動至O,A兩點),過點C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF.連接AF并延長交x軸的正半軸于點B,連接OF,設(shè)OD=t.
          (1)求tan∠FOB的值;
          (2)用含t的代數(shù)式表示△OAB的面積S;
          (3)是否存在點B,使以B,E,F(xiàn)為頂點的三角形與△OFE相似?若存在,請求出所有滿足要求的B點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,矩形AOBC在直角坐標(biāo)系中,O為原點,A在x軸上,B在y軸上,直線AB的函數(shù)關(guān)系式為y=-
          43
          x+8
          ,M是OB上的一點,若將梯形AMBC沿AM折疊,點B恰好落在x軸上的精英家教網(wǎng)點B′處,C的對應(yīng)點為C′.
          (1)求出B′點和M點的坐標(biāo);
          (2)求直線A C′的函數(shù)關(guān)系式;
          (3)設(shè)一動點P從A點出發(fā),以每秒1個單位速度沿射線AB方向運動,過P作PQ⊥AB,交射線AM于Q;
          ①求運動t秒時,Q點的坐標(biāo);(用含t的代數(shù)式表示)
          ②以Q為圓心,以PQ的長為半徑作圓,當(dāng)t為何值時,⊙Q與y軸相切?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO是正三角形,若點B的坐標(biāo)是(-2,0),則點A的坐標(biāo)是
          (-1,
          3
          ),(-1,-
          3
          )
          (-1,
          3
          ),(-1,-
          3
          )

          查看答案和解析>>

          同步練習(xí)冊答案