日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,已知△ABC中,AB=10cmAC=8cm,BC=6cm.如果點PB出發(fā)沿BA方向點A勻速運動,同時點QA出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接PQ,設運動的時間為t(單位:s)(0≤t≤4).解答下列問題:

          1)當t為何值時,PQ∥BC

          2)設△AQP面積為S(單位:cm2),當t為何值時,S取得最大值,并求出最大值.

          3)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由.

          4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t,使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.

          【答案】1s2)當t=s時,S取得最大值,最大值為cm23)不存在。理由見解析(4)存在,cm2

          【解析】

          解:∵AB=10cm,AC=8cmBC=6cm,

          由勾股定理逆定理得△ABC為直角三角形,∠C為直角。

          1BP=2t,則AP=10﹣2t

          PQ∥BC,則,即,解得。

          s時,PQ∥BC。

          2)如圖1所示,過P點作PD⊥AC于點D。

          PD∥BC∴△APD∽△ABC。

          ,即,解得。

          ∴S=×AQ×PD=×2t×

          t=s時,S取得最大值,最大值為cm2。

          3)不存在。理由如下:

          假設存在某時刻t,使線段PQ恰好把△ABC的面積平分,

          則有SAQP=SABC,而SABC=ACBC=24此時SAQP=12。

          由(2)可知,SAQP=,=12,化簡得:t2﹣5t+10=0。

          ∵△=﹣52﹣4×1×10=﹣150,此方程無解,

          不存在某時刻t,使線段PQ恰好把△ABC的面積平分。

          4)存在。

          假設存在時刻t,使四邊形AQPQ′為菱形,

          則有AQ=PQ=BP=2t

          如圖2所示,過P點作PD⊥AC于點D,

          則有PD∥BC

          ∴△APD∽△ABC。

          ,即

          解得:PD=,AD=,

          ∴QD=AD﹣AQ=。

          Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(2+2=2t2,

          化簡得:13t2﹣90t+125=0,解得:t1=5,t2=

          ∵t=5s時,AQ=10cmAC,不符合題意,舍去,∴t=

          由(2)可知,SAQP=

          ∴S菱形AQPQ′=2SAQP=2×=2×[﹣×2+6×]=。

          存在時刻t=,使四邊形AQPQ′為菱形,此時菱形的面積為cm2。

          1)由PQ∥BC時的比例線段關系,列一元一次方程求解。

          2)如圖1所示,過P點作PD⊥AC于點D,得△APD∽△ABC,由比例線段,求得PD,從而可以得到S的表達式,然后利用二次函數(shù)的極值求得S的最大值。

          3)利用(2)中求得的△AQP的面積表達式,再由線段PQ恰好把△ABC的面積平分,列出一元二次方程;由于此一元二次方程的判別式小于0,則可以得出結論:不存在這樣的某時刻t,使線段PQ恰好把△ABC的面積平分。

          4)根據(jù)菱形的性質及相似三角形比例線段關系,求得PQQDPD的長度;然后在Rt△PQD中,求得時間t的值;最后求菱形的面積,值得注意的是菱形的面積等于△AQP面積的2倍,從而可以利用(2)中△AQP面積的表達式,這樣可以化簡計算。

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,EAD上一點,MN垂直平分BE,分別交ADBE,BC于點M,ON,連接BM,EN

          (1)求證:四邊形BMEN是菱形.

          (2)AE8,FAB的中點,BF+OB8,求MN的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC 中,DE 分別是 AB,BC 上的點,且 DEAC,若 SBDESCDE=1:3,則SDEBSADC=( )

          A. 1:5 B. 1:9 C. 1:10 D. 1:12

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側),拋物線的頂點為C,直線y=x+3x軸交于點D.

          (Ⅰ)求拋物線的頂點C的坐標及A,B兩點的坐標;

          (Ⅱ)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點EDAC內,求t的取值范圍;

          (Ⅲ)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當PAB的面積是ABC面積的2倍時,求m,n的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展經典誦讀進校園活動,某校團委組織八年級100名學生進行經典誦讀選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表。

          組別

          分數(shù)段

          頻次

          頻率

          A

          60x<70

          17

          0.17

          B

          70x<80

          30

          a

          C

          80x<90

          b

          0.45

          D

          90x<100

          8

          0.08

          請根據(jù)所給信息,解答以下問題:

          (1)表中a=___b=___;

          (2)請計算扇形統(tǒng)計圖中B組對應扇形的圓心角的度數(shù);

          (3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】從甲、乙、丙三個廠家生產的同一種產品中,各抽出件產品,對其使用壽命進行跟蹤調查,結果如下(單位:年)

          甲:,,,,,

          乙:,,,,,

          丙:,,,,,,

          三家廣告中都稱該種產品的使用壽命是年,請根據(jù)調查結果判斷三個廠家在廣告中分別運用了平均數(shù),眾數(shù)和中位數(shù)的哪一種數(shù)據(jù)作代表.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據(jù)調查結果繪制了如下兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).

          根據(jù)以上信息,解答下列問題:

          )該班共有 名學生,其中穿175型校服的學生有 名;

          )在條形統(tǒng)計圖中,請把空缺部分補充完整.

          )在扇形統(tǒng)計圖中,185型校服所對應的扇形圓心角的大小為 ;

          )該班學生所穿校服型號的眾數(shù)為 ,中位數(shù)為

          )如果該校預計招收新生600名,根據(jù)樣本數(shù)據(jù),估計新生中穿170型校服的學生大約有 名.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC的面積為8cm2 , AP垂直∠B的平分線BPP,則△PBC的面積為(

          A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知,如圖,∠C90°,∠B30°,ADABC的角平分線.

          1)求證:BD2CD;

          2)若CD2,求ABD的面積.

          查看答案和解析>>