日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等腰RtABC中,∠C90°,AC8,FAB邊上的中點,點D、E分別在ACBC邊上運動,且保持ADCE.連接DEDF、EF.在此運動變化的過程中,下列結(jié)論:①DFE是等腰直角三角形;②DE長度的最小值為4;③四邊形CDFE的面積保持不變;④CDE面積的最大值為8.其中正確的結(jié)論是( 。

          A.①②③B.①③C.①③④D.②③④

          【答案】C

          【解析】

          ①連接CF,構(gòu)造全等三角形,證明△ADF≌△CEF即可.

          ②通過①可得△DFE是等腰直角三角形,則斜邊DE=DF,求得DF的最小值即可得到DE的最小值.

          ③通過證明△ADF≌△CEF,進行等面積代換即可得出.

          ④通過結(jié)論③,換角度將四邊形CDFE的面積分為△CDE與△DEF,令△DEF的面積最小即可.

          ①連接CF.

          ∵△ABC為等腰直角三角形,

          ∴∠FCB=∠A=45°,CF=AF=FB,

          ∵AD=CE,

          ∴△ADF≌△CEF,

          ∴EF=DF,∠CFE=∠AFD,

          ∵∠AFD+∠CFD=90°

          ∴∠CFE+∠CFD=∠EFD=90°,

          ∴△EDF是等腰直角三角形,

          故本選項正確;

          ②∵△DEF是等腰直角三角形,

          ∴當(dāng)DE最小時,DF也最小,

          即當(dāng)DF⊥AC時,DE最小,此時DF=BC=4,

          ∴DE=DF=

          故本選項錯誤;

          ③∵△ADF≌△CEF,

          ∴S△CEF=S△ADF,

          ∴S四邊形CDFE=S△DCF+S△CEF=S△DCF+S△ADF=S△ACF=S△ABC

          故本選項正確;

          ④當(dāng)△CED面積最大時,由③知,此時△DEF的面積最小,此時,

          S△CED=S四邊形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8,

          故本選項正確;

          綜上所述正確的有①③④.

          故選:C.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以原點為對稱中心,把點A(3,4)逆時針旋轉(zhuǎn)90°,得到點B,則點B的坐標(biāo)為(

          A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校在八年級(1)班學(xué)生中開展對于我國國家公祭日知曉情況的問卷調(diào)調(diào)查. 問卷調(diào)查的結(jié)果分為A、BC、D四類,其中A類表示非常了解;B類表示比較了解;C類表示基本了解D類表示不太了解;班長將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計圖.

          請根據(jù)上述信息解答下列問題:

          1)該班參與問卷調(diào)查的人數(shù)有  人;

          2)補全條形統(tǒng)計圖;

          3)求C類人數(shù)占總調(diào)查人數(shù)的百分比;

          4)求扇形統(tǒng)計圖中A類所對應(yīng)扇形圓心角的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:△ABC,AB=AC,BAC=120,

          1)利用直尺、圓規(guī),求作AB的垂直平分線DE,BC于點D、交AB于點E:(不要求寫出作法,但要求保留作圖痕跡)

          2)若BD=3,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:CP是等邊ABC的外角∠ACE的平分線,點D在邊BC上,以D為頂點,DA為一條邊作∠ADF=60°,另一邊交射線CPF

          (1)求證:AD=FD

          (2)AB=2,BD=x,DF=y,y關(guān)于x的函數(shù)解析式

          (3)若點D在線段BC的延長線上,(1)中的結(jié)論還一定成立嗎?若成立,請證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當(dāng)點K到達點F時停止運動,點P也隨之停止.設(shè)點P、K運動的時間是t秒(t>0).

          (1)當(dāng)t=1時,KE=_____,EN=_____;

          (2)當(dāng)t為何值時,△APM的面積與△MNE的面積相等?

          (3)當(dāng)點K到達點N時,求出t的值;

          (4)當(dāng)t為何值時,△PKB是直角三角形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)已知,且3x+4z﹣2y=40,求x,y,z的值;

          (2)已知:兩相似三角形對應(yīng)高的比為3:10,且這兩個三角形的周長差為560cm,求它們的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了測量某教學(xué)樓CD的高度,小明在教學(xué)樓前距樓基點C,12米的點A處測得樓頂D的仰角為50°,小明又沿CA方向向后退了3米到點B處,此時測得樓頂D的仰角為40°(B、A、C在同一水平線上),依據(jù)這些數(shù)據(jù)小明能否求出教學(xué)樓的高度?若能求,請你幫小明求出樓高;若不能求,請說明理由.(2.24)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC是等邊三角形,AECDAD、BE相交于點PBQDAQ,∠BPQ的度數(shù)是_____;若PQ3,EP1,則DA的長是_____

          查看答案和解析>>

          同步練習(xí)冊答案