日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義:如圖1,拋物線 軸交于A,B兩點,點P在拋物線上(點P與A,B兩點不重合),如果△ABP的三邊滿足 ,則稱點P為拋物線 的勾股點。

          (1)直接寫出拋物線 的勾股點的坐標;
          (2)如圖2,已知拋物線C: 軸交于A,B兩點,點P(1, )是拋物線C的勾股點,求拋物線C的函數(shù)表達式;
          (3)在(2)的條件下,點Q在拋物線C上,求滿足條件 的點Q(異于點P)的坐標

          【答案】
          (1)

          解:勾股點的坐標為(0,1)


          (2)

          解:拋物線y=ax2+bx(a≠0)過原點(0,0),即A(0,0),

          如圖作PG⊥x軸于點G,連接PA,PB,

          ∵點P(1,),

          ∴ AG=1,PG=,

          ∴PA=2,tan∠PAB=,

          ∴∠PAB=60°,
          ∴在Rt△PAB中,AB==4,

          ∴點B(4,0),

          設y=ax(x-4),當x=1時,y=,

          解得a=-,

          ∴y=-x(x-4)=-x2+x.


          (3)

          解:① 當點Q在x軸上方,由S△ABQ=S△ABP,易知點Q的縱坐標為,

          ∴-x2+x=,解得x1=3,x2=1(不合題意,舍去),

          ∴Q(3,),

          ②當點Q在x軸下方,由S△ABQ=S△ABP,易知點Q的縱坐標為-,

          ∴-x2+x=-,解得x1=2+,x2=2-,

          ∴Q(2+,-)Q(2-,-),

          綜上,滿足條件的點Q有三個:Q(3,)Q(2+,-)Q(2-,-).


          【解析】(1)解:y=-x2+1與x軸交于A(-1,0),B(1,0),與y軸交于P(0,1),
          ∴AB=2,AP=BP=,
          ∴AP2+BP2=AB2
          ∴勾股點P(0,1),

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】解下列方程:

          (1) (2);

          (3) (4)[x﹣(x﹣1)]=2(x﹣1)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,平面直角坐標系中有等邊△AOB,點O為坐標原點,OB=2,平行于x軸且與x軸的距離為1的線段CD分別交y軸、AB于點C,D.若線段CD上點P與△AOB的某一頂點的距離為,則線段PC(PC<2.5)的長為____________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB,C,D為矩形的四個頂點,AB=16 cm,BC=6 cm,動點PQ分別從點A,C同時出發(fā),點P以3 cm/s的速度向點B移動,點Q以2 cm/s的速度向點D移動.當點P運動到點B停止時,點Q也隨之停止運動.問幾秒時點P和點Q的距離是10 cm?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9

          (1)求證:△COD∽△CBE;
          (2)求半圓O的半徑 的長

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,點Amm在第一象限,且實數(shù)m滿足條件:,ABy軸于BACx軸于C

          (1)求m的值;

          (2)如圖1,BE=1,過AAFAEx軸于F,連EFDAO上,且AD=AE,連接ED并延長交x軸于點P,求點P的坐標;

          (3)如圖2,G為線段OC延長線上一點,AC=CG,E為線段OB上一動點(不與OB重合),F為線段CE的中點,若BFFKAGK,延長BF、AC交于M,連接KM請問FBK的大小是否變化?若不變,請求其值;若改變,求出變化的范圍

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形,若學校位置坐標為A1,2),解答以下問題:

          1)請在圖中建立適當?shù)闹苯亲鴺讼担懗鰣D書館B位置的坐標;

          2)若體育館位置坐標為C(-3,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖①,矩形紙片ABCD的邊長分別為a、bab),點M、N分別為邊AD、BC上兩點(點AC除外),連接MN

          (1)如圖②,分別沿ME、NF MN兩側紙片折疊,使點A、C分別落在MN上的A′、C′處,直接寫出MEFN的位置關系;

          (2)如圖③,當MNBC 時,仍按(1)中的方式折疊,請求出四邊形AEBN與四邊形CFDM 的周長(用含a的代數(shù)式表示),并判斷四邊形AEBN與四邊形CFDM周長之間的數(shù)量關系;

          (3)如圖④,若對角線BDMN交于點O,分別沿BMDNMN兩側紙片折疊,折疊后,點A、C恰好都落在點O處,并且得到的四邊形BNDM是菱形,請你探索a、b之間的數(shù)量關系.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,長方形ABCD的面積為300cm2 , 長和寬的比為3:2.在此長方形內沿著邊的方向能否并排裁出兩個面積均為147cm2的圓(π取3),請通過計算說明理由.

          查看答案和解析>>

          同步練習冊答案