日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點(diǎn)E為矩形ABCD中AD邊中點(diǎn),將矩形ABCD沿CE折疊,使點(diǎn)D落在矩形內(nèi)部的點(diǎn)F處,延長(zhǎng)CF交AB于點(diǎn)G,連接AF

          (1)求證:AF∥CE;
          (2)探究線段AF,EF,EC之間的數(shù)量關(guān)系,并說明理由;
          (3)若BC=6,BG=8,求AF的長(zhǎng).

          【答案】
          (1)

          證明:連接FD交EC于P,

          由折疊矩形ABCD可得,EF=ED,CF=CD,∠DEC=∠FEC,∠EFG=∠EFC=∠EDC=90°,

          ∵點(diǎn)E為AD的中點(diǎn),

          ∴AE=ED=EF,

          ∴∠EAF=∠EFA,

          ∵∠DEF=∠EAF+∠EFA=∠DEC+∠FEC,

          ∴∠EAF=∠DEC,

          ∴AF∥EC;


          (2)

          ∵EF=ED,CF=CD,

          ∴E,C兩點(diǎn)都在線段DF的中垂線上,即EC⊥DF,

          ∴∠DPE=90°,

          ∵AF∥EC,

          ∴∠AFD=∠DPE=∠EDC=90°,

          ∵∠EAF=∠DEC,∠AFD=∠EDC,

          ∴△AFD∽△EDC,

          ,即AFEC=DEAD,

          ∴AFEC=2EF2


          (3)

          ∵∠GAF+∠EAF=∠GFA+∠EFA=90°,∠EAF=∠EFA,

          ∴∠GAF=∠GFA,

          ∴AG=FG,

          在Rt△BGC中,BC=6,BG=8,

          CG= =10,

          ∵AB=CD=CF,

          ∴8+AG=10﹣FG,

          ∴AG=FG=1,

          ∴CF=CD=9,

          ∵AD=BC=6,

          ∴EF= AD=3,

          ∴在Rt△DEC中,EC= =3 ,

          ∵AFEC=2EF2

          ∴3 ×AF=2×32,

          解得,AF=


          【解析】(1)連接FD交EC于P,根據(jù)折疊的性質(zhì)得到EF=ED,CF=CD,∠DEC=∠FEC,∠EFG=∠EFC=∠EDC=90°,根據(jù)直角三角形的性質(zhì)得到AE=ED=EF,求出∠EAF=∠DEC,根據(jù)平行線的判定定理證明;(2)證明△AFD∽△EDC,根據(jù)相似三角形的性質(zhì)定理計(jì)算即可;(3)根據(jù)勾股定理求出CG,根據(jù)矩形的性質(zhì)求出AB,根據(jù)(2)的結(jié)論計(jì)算即可.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,△APBC是等邊三角形,連接PD,DB,則 =

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數(shù)量關(guān)系是_____________________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個(gè)交點(diǎn);
          ②如果將它的圖象向左平移3個(gè)單位后過原點(diǎn),則m=1;
          ③如果當(dāng)x=2時(shí)的函數(shù)值與x=8時(shí)的函數(shù)值相等,則m=5.
          其中一定正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號(hào)都填上)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠A=90°,∠ACB的平分線交AB于D,已知∠DCB=2∠B,求∠ACD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)E、F分別是□ABCD的邊BC、CD上的點(diǎn),∠EAF=60°,AF=4

          (1) AB=2,點(diǎn)E與點(diǎn)B、點(diǎn)F與點(diǎn)D分別重合,求平行四邊形ABCD的面積

          (2) AB=BC,∠B=∠EAF=60°,求證:△AEF為等邊三角形

          (3) BE=CE,CF=2DF,AB=3,直接寫出AE的長(zhǎng)度(無需解答過程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC繞AB旋轉(zhuǎn)一周,所得幾何體的表面積是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1 , y1),B(x2 , y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )

          A.y1<y2
          B.y1>y2
          C.y的最小值是﹣3
          D.y的最小值是﹣4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一動(dòng)點(diǎn),點(diǎn)D,E分別是ACBC中點(diǎn).

          1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm;

          2)若AC=4cm,求DE的長(zhǎng);

          3)試說明無論AC取何值(不超過12cm),DE的長(zhǎng)不變;

          4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點(diǎn)C畫射線OC.OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關(guān).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案