日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
          例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
          請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
          (1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
          (2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
          (3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

          【答案】分析:(1)本題AB⊥DE,滿足垂徑定理,可以寫(xiě)出垂徑定理的結(jié)論;
          (2)根據(jù)三角形相似就可以證出;
          (3)若點(diǎn)C和點(diǎn)E重合,設(shè)∠BAC=x,又D是的中點(diǎn),根據(jù)2∠CAD=∠CAD+ACD=180°-∠ABC,就可以求出∠BAC的度數(shù).
          解答:解:(1)弦(圖中線段AB)、。▓D中的ACB。⒐、求弓形的面積(因?yàn)槭欠忾]圖形)等.
          (寫(xiě)對(duì)一個(gè)給(1分),寫(xiě)對(duì)兩個(gè)給2分)

          (2)如圖,AB為弦,CD為弦,且AB與CD在圓內(nèi)相交于點(diǎn)P.
          結(jié)論:PA•PB=PC•PD.
          證明:連接AD,BC,
          ∵∠APD=∠BPC,∠D=∠B
          ∴△APD∽△BPC
          ∴PA•PB=PC•PD;

          (3)若點(diǎn)C和點(diǎn)E重合,
          則由圓的對(duì)稱性,知點(diǎn)C和點(diǎn)D關(guān)于直徑AB對(duì)稱,(8分)
          設(shè)∠BAC=x,則∠BAD=x,∠ABC=90°-x,(9分)
          又D是的中點(diǎn),所以2∠CAD=∠CAD+∠ACD=180°-∠ABC,
          即2•2x=180°-(90°-x),(10分)
          解得x=∠BAC=30°.(11分)
          (若求得AB=或AF=3•FB等也可,評(píng)分可參照上面的標(biāo)準(zhǔn);也可以先直覺(jué)猜測(cè)點(diǎn)B、C是圓的十二等分點(diǎn),然后說(shuō)明.)
          點(diǎn)評(píng):本題主要考查了垂徑定理以及相交弦定理的證明過(guò)程,正確理解題意,讀懂圖意是解決本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
          例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
          請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
          (1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
          (2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
          (3)如圖3,其中AB是圓O的直徑,AC是弦,D是
          ABC
          的中點(diǎn),弦DE精英家教網(wǎng)⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第28章《圓》中考題集(22):28.1 圓的認(rèn)識(shí)(解析版) 題型:解答題

          我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
          例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
          請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
          (1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
          (2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
          (3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》中考題集(23):3.3 圓周角(解析版) 題型:解答題

          我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
          例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
          請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
          (1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
          (2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
          (3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第5章《中心對(duì)稱圖形(二)》中考題集(21):5.3 圓周角(解析版) 題型:解答題

          我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
          例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
          請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
          (1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
          (2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
          (3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

          (2008•佛山)我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
          例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
          請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
          (1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
          (2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
          (3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案