日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C.
          (1)求出此拋物線的解析式,并寫出頂點坐標(biāo);
          (2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標(biāo),并求出直線AD的解析式;
          (3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q精英家教網(wǎng).是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.
          分析:(1)可將A,B兩點的坐標(biāo)代入函數(shù)的解析式中,可求出拋物線的解析式.進(jìn)而求出對稱軸的解析式和定點的坐標(biāo);
          (2)由于二次函數(shù)和等腰梯形都是軸對稱圖形,可根據(jù)拋物線的對稱軸和C點的坐標(biāo)求出D的坐標(biāo).然后用待定系數(shù)法求出A,D所在直線的解析式.
          精英家教網(wǎng)精英家教網(wǎng)
          精英家教網(wǎng)精英家教網(wǎng)
          (3)分五種情況進(jìn)行討論:
          ①如圖1,P與M的縱坐標(biāo)相等,可將M的縱坐標(biāo)代入拋物線中求出P的坐標(biāo),然后可根據(jù)M,P的橫坐標(biāo)求出MP的長,即AQ的長,然后根據(jù)A的坐標(biāo)即可求出Q的坐標(biāo).
          ②如圖2,方法同①.
          ③如圖3,根據(jù)平行四邊形的對稱性,那么M,P的縱坐標(biāo)互為相反數(shù),因此可求出P的坐標(biāo),可先在三角形AOM中求出AO的長,然后A到拋物線對稱軸的長+P的橫坐標(biāo)=Q的橫坐標(biāo),據(jù)此可求出Q點的坐標(biāo).
          ④如圖4,可參照③的方法求出P的坐標(biāo),然后求出PA的長,即MQ的長,然后可過D作x軸的垂線,通過構(gòu)建直角三角形求出OQ的長.進(jìn)而得出Q的坐標(biāo).
          ⑤根據(jù)題意畫出圖形,即可求出答案.
          解答:解:(1)根據(jù)題意,得
          4a-2+c=0
          36a+6+c=0

          解得
          a=-
          1
          4
          c=3
          ,
          ∴拋物線的解析式為y=-
          1
          4
          x2+x+3
          ,
          頂點坐標(biāo)是(2,4);

          (2)D(4,3),
          設(shè)直線AD的解析式為y=kx+b(k≠0),精英家教網(wǎng)
          ∵直線經(jīng)過點A(-2,0)、點D(4,3),
          -2k+b=0
          4k+b=3
          ,
          k=
          1
          2
          b=1

          ∴y=
          1
          2
          x+1;

          (3)存在.
          ①如圖1,P與M的縱坐標(biāo)相等,可將M的縱坐標(biāo)代入拋物線中求出P的坐標(biāo),然后可根據(jù)M,P的橫坐標(biāo)求出MP的長,即AQ的長,然后根據(jù)A的坐標(biāo)即可求出Q的坐標(biāo):Q1(2
          2
          -2,0);
          ②如圖2,方法同①,Q2(-2
          2
          -2,0);
          ③如圖3,根據(jù)平行四邊形的對稱性,那么M,P的縱坐標(biāo)互為相反數(shù),因此可求出P的坐標(biāo),可先在三角形AOM中求出AO的長,然后A到拋物線對稱軸的長+P的橫坐標(biāo)=Q的橫坐標(biāo),據(jù)此可求出Q點的坐標(biāo):Q3(6-2
          6
          ,0);
          ④如圖4,可參照③的方法求出P的坐標(biāo),然后求出PA的長,即MQ的長,然后可過D作x軸的垂線,通過構(gòu)建直角三角形求出OQ的長.進(jìn)而得出Q的坐標(biāo):Q4(6+2
          6
          ,0).
          ⑤以AM為對角線時,把x=2代入y=
          1
          2
          x+1得y=2,精英家教網(wǎng)
          即M的坐標(biāo)是(2,2),
          過M作x軸的平行線交拋物線與P5、P6,
          則這兩點的縱坐標(biāo)是2,
          把y=2代入y=-
          1
          4
          x2+x+3得:y=-
          1
          4
          x2+x+3=2,
          解得:x=2±2
          2
          ,
          即P5(2-2
          2
          ,2),P6(2+2
          2
          ,2),
          ∴Q5的坐標(biāo)是(2
          2
          -2,0),Q6的坐標(biāo)是(-2-2
          2
          ,0).
          綜上所述:Q1(2
          2
          -2,0),Q2(-2
          2
          -2,0),Q3(6-2
          6
          ,0),Q4(6+2
          6
          ,0).
          點評:本題主要考查了二次函數(shù)的相關(guān)知識,(1)(2)比較簡單,要注意的是(3)中要把所有的情況都考慮到不要漏解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:內(nèi)蒙古自治區(qū)模擬題 題型:解答題

          已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C。
          (1)求出此拋物線的解析式,并寫出頂點坐標(biāo);
          (2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標(biāo),并求出直線AD的解析式;(3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q,是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市蕭山區(qū)九年級(上)段考數(shù)學(xué)試卷(1-2章)(解析版) 題型:解答題

          已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C.
          (1)求出此拋物線的解析式,并寫出頂點坐標(biāo);
          (2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標(biāo),并求出直線AD的解析式;
          (3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q.是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(33):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

          已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C.
          (1)求出此拋物線的解析式,并寫出頂點坐標(biāo);
          (2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標(biāo),并求出直線AD的解析式;
          (3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q.是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年云南省楚雄州雙柏縣中考數(shù)學(xué)模擬試卷(雨龍中學(xué))(解析版) 題型:解答題

          (2009•撫順)已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C.
          (1)求出此拋物線的解析式,并寫出頂點坐標(biāo);
          (2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標(biāo),并求出直線AD的解析式;
          (3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q.是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案