日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為扶持大學(xué)生自主創(chuàng)業(yè),市政府提供了80萬(wàn)元的無(wú)息貸款,用于某大學(xué)生開(kāi)辦公司,生產(chǎn)并銷(xiāo)售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營(yíng)的利潤(rùn)逐步償還無(wú)息貸款.已知該電子產(chǎn)品的生產(chǎn)成本為每件40,公司每月要支付其他費(fèi)用15萬(wàn)元.該產(chǎn)品每月的銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x()滿(mǎn)足如圖所示的一次函數(shù)關(guān)系:

          (1)求每月銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式.

          (2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),該公司每月銷(xiāo)售利潤(rùn)最大.

          (3)若相關(guān)部門(mén)要求該電子產(chǎn)品的銷(xiāo)售單價(jià)不得低于其生產(chǎn)成本,且銷(xiāo)售每件產(chǎn)品的利潤(rùn)率不能超過(guò)25%,則該公司最早用幾個(gè)月可以還清無(wú)息貸款?

          【答案】(1) y=-x+8;(2) 60;(3)6.

          【解析】

          (1)根據(jù)題目中所給的圖象,確定一次函數(shù)圖象經(jīng)過(guò)點(diǎn)(60,2)(70,1),再利用待定系數(shù)法求每月銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式即可;(2)設(shè)當(dāng)銷(xiāo)售單價(jià)定為x元時(shí),該公司每月銷(xiāo)售利潤(rùn)為W萬(wàn)元,根據(jù)“總利潤(rùn)=單件的利潤(rùn)×銷(xiāo)售量”列出Wx的二次函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)求解即可;(3)根據(jù)題意求得x的取值范圍,再求得在這一取值范圍內(nèi)w的最大值,再計(jì)算解答即可.

          :(1)設(shè)每月銷(xiāo)售量yx的函數(shù)解析式為y=kx+b(k≠0),(60,2)(70,1)代入得解得y=-x+8.

          (2)設(shè)當(dāng)銷(xiāo)售單價(jià)定為x元時(shí),該公司每月銷(xiāo)售利潤(rùn)為W萬(wàn)元,W=(x-40)-15=-x2+12x-335=-(x-60)2+25,則當(dāng)銷(xiāo)售單價(jià)定為60元時(shí),該公司每月銷(xiāo)售利潤(rùn)最大.

          (3)由題意得解得40≤x≤50,

          W=-(x-60)2+25,拋物線(xiàn)開(kāi)口向下,當(dāng)x<60時(shí),Wx的值增大而增大,當(dāng)x=50時(shí),每月有最大利潤(rùn)為W=-×(50-60)2+25=15(萬(wàn)元),80÷15==5,該公司最早用6個(gè)月可以還清無(wú)息貸款.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,為了檢驗(yàn)教室里的矩形門(mén)框是否合格,某班的四個(gè)學(xué)習(xí)小組用三角板和細(xì)繩分別測(cè)得如下結(jié)果,其中不能判定門(mén)框是否合格的是( )

          A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小明想利用太陽(yáng)光測(cè)量樓高,他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,小明邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A、E、C在同一直線(xiàn)上).已知小明的身高EF是1.7m,請(qǐng)你幫小明求出樓高AB(結(jié)果精確到0.1m).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)y=-(m+2)(m為常數(shù)),求當(dāng)m為何值時(shí):

          (1)yx的一次函數(shù)?

          (2)yx的二次函數(shù)?并求出此時(shí)縱坐標(biāo)為-8的點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線(xiàn)y=x2-2x-3的頂點(diǎn)為A,x軸于B,D兩點(diǎn),y軸交于點(diǎn)C.

          (1)求線(xiàn)段BD的長(zhǎng);

          (2)ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】菱形AOBC如圖放置,A(3,4),先將菱形向左平移9個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,然后沿軸翻折,最后繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°得到點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)P,則點(diǎn)P的坐標(biāo)為 ( )

          A. (-3,-1) B. (3,1) C. (3,1)(-3,-1) D. (-3,1)(3,-1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在等邊ABC中,AHBC,垂足為H,且AH=6 cm,點(diǎn)DAB的中點(diǎn),點(diǎn)PAH上一動(dòng)點(diǎn),則DPBP和的最小值是__________cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)EBC的中點(diǎn),ABBC,DCBC,AE平分BAD,下列結(jié)論:①AED=90°ADE=CDEDE=BEAD=AB+CD,四個(gè)結(jié)論中成立的是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線(xiàn)交AD于點(diǎn)E,連接BD,CD.

          (1)求證:BD=CD;

          (2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案