日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=x2+bx+c交x軸于A(1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,其頂精英家教網(wǎng)點(diǎn)為D.
          (1)求b、c的值并寫出拋物線的對(duì)稱軸;
          (2)連接BC,過點(diǎn)O作直線OE⊥BC交拋物線的對(duì)稱軸于點(diǎn)E.求證:四邊形ODBE是等腰梯形;
          (3)拋物線上是否存在點(diǎn)Q,使得△OBQ的面積等于四邊形ODBE的面積的
          13
          ?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
          分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)b、c的值,進(jìn)而可得到拋物線的對(duì)稱軸方程;
          (2)設(shè)拋物線的對(duì)稱軸DE與x軸的交點(diǎn)為F,根據(jù)拋物線的對(duì)稱軸方程即可求得F點(diǎn)的坐標(biāo);根據(jù)拋物線的解析式可求出C、D的坐標(biāo),即可證得△OBC、△BDF都是等腰直角三角形,那么∠DBF=∠CBA=∠EOB=45°,由此可證得OE∥BD,然后再根據(jù)O、D、B、E四點(diǎn)坐標(biāo)求出OD、BE的長(zhǎng),即可證得所求的結(jié)論;
          (3)首先求出四邊形ODBE的面積,進(jìn)而可得到△OBQ的面積,由于OB的長(zhǎng)為定值,根據(jù)△OBQ的面積即可確定Q點(diǎn)縱坐標(biāo)的絕對(duì)值,將其代入拋物線的解析式中即可求得Q點(diǎn)的坐標(biāo).
          解答:精英家教網(wǎng)(1)解:分別把A(1,0)、B(3,0)兩點(diǎn)坐標(biāo)代入y=x2+bx+c得到關(guān)于b、c的方程組,
          解之得:b=-4,c=3,
          ∴拋物線的對(duì)稱軸為:直線x=2;

          (2)證明:拋物線的解析式為y=x2-4x+3,
          當(dāng)x=0時(shí),y=3
          ∴C點(diǎn)坐標(biāo)為(0,3),
          而y=x2-4x+3=(x-2)2-1,
          ∴拋物線頂點(diǎn)D點(diǎn)坐標(biāo)為(2,-1).
          ∴tan∠DOF=
          1
          2

          設(shè)拋物線的對(duì)稱軸DE交x軸于點(diǎn)F,
          ∴F點(diǎn)坐標(biāo)為(2,0),連接OD,DB,BE.
          ∵△OBC是等腰直角三角形,OE⊥BC,
          ∴∠EOB=45°,而OF=2,EF⊥OB,
          ∴EF=2,
          ∴E點(diǎn)坐標(biāo)為(2,2),
          ∴tan∠FBE=2,
          ∴∠DOF≠∠FBE,
          ∴DO與EB不平行.
          而△DFB也是等腰直角三角形,
          ∴∠BOE=∠OBD=45°,
          ∴OE∥BD,
          ∴四邊形ODBE是梯形.(5分)
          在Rt△ODF和Rt△EBF中,
          OD=
          OF2+DF2
          =
          22+12
          =
          5
          ,BE=
          EF2+FB2
          =
          22+12
          =
          5
          ,
          ∴OD=BE,
          ∴四邊形ODBE是等腰梯形.(7分)

          (3)解:存在.理由如下:(8分)
          由題意得:S四邊形ODBE=
          1
          2
          OB•DE=
          1
          2
          ×3×3=
          9
          2
          .(9分)
          設(shè)點(diǎn)Q坐標(biāo)為(x,y).
          由題意得:S三角形OBQ=
          1
          2
          OB•|y|=
          3
          2
          |y|
          ,S四邊形ODBE=
          1
          3
          ×
          9
          2
          =
          3
          2
          ,
          ∴y=±1.
          當(dāng)y=1時(shí),即x2-4x+3=1,
          x1=2+
          2
          x2=2-
          2
          ,
          ∴Q點(diǎn)坐標(biāo)為(2+
          2
          ,1)或(2-
          2
          ,1)(11分)
          當(dāng)y=-1時(shí),即x2-4x+3=-1,
          ∴x=2,
          ∴Q點(diǎn)坐標(biāo)為(2,-1),即為頂點(diǎn)D.
          綜上所述,拋物線上存在三點(diǎn)Q1(2+
          2
          ,1),Q2(2-
          2
          ,1),Q3(2,-1).
          使得S三角形OBQ=
          1
          3
          S四邊形ODBE.(12分)
          點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、等腰梯形的判定以及圖形面積的求法等知識(shí)的綜合應(yīng)用能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
          A、4B、8C、-4D、16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
          (1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
          (2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
          精英家教網(wǎng)(1)求b+c的值;
          (2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
          (3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
          (1)求b、c的值;
          (2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
          (3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案