【題目】平面上,Rt△ABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓O交BC邊于點(diǎn)D,將半圓O繞點(diǎn)C按逆時針方向旋轉(zhuǎn),點(diǎn)D隨半圓O旋轉(zhuǎn)且∠ECD始終等于∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).
(1)當(dāng)α=0°時,連接DE,則∠CDE= °,CD= ;
(2)試判斷:旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明;
(3)若m=10,n=8,當(dāng)旋轉(zhuǎn)的角度α恰為∠ACB的大小時,求線段BD的長;
(4)若m=6,n=,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時,直接寫出線段BD的長.
【答案】(1)90,;(2)
,無變化,(3)BD=
;(4)即:BD=
或
.
【解析】試題分析:(1)①根據(jù)直徑的性質(zhì),由DE∥AB得即可解決問題.②求出BD、AE即可解決問題.
(2)只要證明△ACE∽△BCD即可.
(3)求出AB、AE,利用△ACE∽△BCD即可解決問題.
(4)分類討論:①如圖5中,當(dāng)α=90°時,半圓與AC相切,②如圖6中,當(dāng)α=90°+∠ACB時,半圓與BC相切,分別求出BD即可.
試題解析:(1)解:①如圖1中,當(dāng)α=0時,連接DE,則∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴=
.∵BC=n,∴CD=
.故答案為:90°,
n.
②如圖2中,當(dāng)α=180°時,BD=BC+CD=n,AE=AC+CE=
m,∴
=
.故答案為:
.
(2)如圖3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴
.
(3)如圖4中,當(dāng)α=∠ACB時.在Rt△ABC中,∵AC=10,BC=8,∴AB==6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE=
=
=3
,由(2)可知△ACE∽△BCD,∴
,∴
=
,∴BD=
.故答案為:
.
(4)∵m=6,n=,∴CE=3,CD=2
,AB=
=2,①如圖5中,當(dāng)α=90°時,半圓與AC相切.在Rt△DBC中,BD=
=
=2
.
②如圖6中,當(dāng)α=90°+∠ACB時,半圓與BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四邊形BCEM是矩形,∴,∴AM=5,AE=
=
,由(2)可知
=
,∴BD=
.
故答案為:2或
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在《有理數(shù)》這一章中學(xué)習(xí)過絕對值的概念:
一般的,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離叫做數(shù)
的絕對值,記作
.
實(shí)際上,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離可記作
,數(shù)軸上表示數(shù)
的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作
,那么:
(1)①數(shù)軸上表示數(shù)3的點(diǎn)與表示數(shù)1的點(diǎn)的距離可記作 .
②數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作 .
③數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)
的點(diǎn)的距離可記作 .
(2)數(shù)軸上與表示數(shù)的點(diǎn)的距離為5的點(diǎn)有 個,它表示的數(shù)為 .
(3)拓展:①當(dāng)數(shù)取值為 時,數(shù)軸上表示數(shù)
的點(diǎn)與表示數(shù)
的點(diǎn)的距離最小.
②當(dāng)整數(shù)取值為 時,式子
有最小值為 .
③當(dāng)取值范圍為 時,式子
有最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察如圖所示的圖形,回答下列問題:
(1)按甲方式將桌子拼在一起.
4張桌子拼在一起共有 個座位,n張桌子拼在一起共有 個座位;
(2)按乙方式將桌子拼在一起.
6張桌子拼在一起共有 個座位,m張桌子拼在一起共有 個座位;
(3)某食堂有A,B兩個餐廳,現(xiàn)有102張這樣的長方形桌子,計(jì)劃把這些桌子全放在兩個餐廳,每個餐廳都要放有桌子.將a張桌子放在A餐廳,按甲方式每6張拼成1張大桌子;將其余桌子都放在B餐廳,按乙方式每4張桌子拼成1張大桌子,若兩個餐廳一共有404個座位,問A,B兩個餐廳各有多少個座位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,四邊形BDEF是菱形,其中∠E=60°,將菱形BDEF繞點(diǎn)B按順時針方向旋轉(zhuǎn),甲、乙兩位同學(xué)發(fā)現(xiàn)在此旋轉(zhuǎn)過程中,有如下結(jié)論:
甲:線段AF與線段CD的長度總相等;
乙:直線AF和直線CD所夾的銳角的度數(shù)不變;
那么,你認(rèn)為( 。
A. 甲、乙都對 B. 乙對甲不對
C. 甲對乙不對 D. 甲、乙都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與二次函數(shù)
(
為常數(shù))的圖象交于
兩點(diǎn),且點(diǎn)
的坐標(biāo)為
.
(1)求出的值及點(diǎn)
的坐標(biāo);
(2)設(shè),若
時,
隨著
的增大而增大,且
也隨著
的增大而增大,求
的最小值和
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:(ⅰ)如果兩個函數(shù) ,存在
取同一個值,使得
,那么稱
為“互聯(lián)互通函數(shù)”,稱對應(yīng)的
值為
的“互聯(lián)點(diǎn)”; (ⅱ)如果兩個函數(shù)
為“互聯(lián)互通函數(shù)”,那么
的最大值稱為
的“互通值”.
(1)判斷函數(shù)與
是否為“互通互聯(lián)函數(shù)”,如果是,請求出
時他們的“互聯(lián)點(diǎn)”,如果不是,請說明理由;
(2)當(dāng)時,已知函數(shù)
與
是“互聯(lián)互通函數(shù)”.且有唯一“互聯(lián)點(diǎn)”;
①求出的取值范圍;
②若他們的“互通值”為18 ,試求出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長2.5米的梯子AB斜靠在豎直的墻AC上,這時B到墻AC的距離為0.7米.
(1)若梯子的頂端A沿墻AC下滑0.9米至A1處,求點(diǎn)B向外移動的距離BB1的長;
(2)若梯子從頂端A處沿墻AC下滑的距離是點(diǎn)B向外移動的距離的一半,試求梯子沿墻AC下滑的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報(bào)引體向上的初三男生的成績情況,隨機(jī)抽測了本區(qū)部分選報(bào)引體向上項(xiàng)目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計(jì)圖:
請你根據(jù)圖中的信息,解答下列問題:
()寫出扇形圖中
__________
,并補(bǔ)全條形圖.
()在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________個、__________個.
()該區(qū)體育中考選報(bào)引體向上的男生共有
人,如果體育中考引體向上達(dá)
個以上(含
個)得滿分,請你估計(jì)該區(qū)體育中考中選報(bào)引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com