日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,填空:

          (1)如果AB∥CD,那么∠1+      =180°,
          根據(jù)是                                   ;
          (2)如果∠2=     ,那么EF∥DG,
          根據(jù)是                                   ;
          (3)如果EF∥DG,那么∠3=   ,
          根據(jù)是                                   .

          (1),兩直線平行,同旁?xún)?nèi)角互補(bǔ)
          (2),同位角相等,兩直線平行
          (3),兩直線平行,內(nèi)錯(cuò)角相等

          解析試題分析:根據(jù)平行線的判定和性質(zhì)依次分析即可.
          (1)如果AB∥CD,那么∠1+=180°,根據(jù)是兩直線平行,同旁?xún)?nèi)角互補(bǔ);
          (2)如果∠2=,那么EF∥DG,根據(jù)是同位角相等,兩直線平行;
          (3)如果EF∥DG,那么∠3=,根據(jù)是兩直線平行,內(nèi)錯(cuò)角相等.
          考點(diǎn):本題考查的是平行線的判定和性質(zhì)
          點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握兩直線平行,同旁?xún)?nèi)角互補(bǔ),兩直線平行,內(nèi)錯(cuò)角相等;同位角相等,兩直線平行.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          在平面內(nèi),先將一個(gè)多邊形以點(diǎn)O為位似中心放大或縮小,使所得多邊形與原多邊形對(duì)應(yīng)線段的比為k,并且原多邊形上的任一點(diǎn)P,它的對(duì)應(yīng)點(diǎn)P′在線段OP或其延長(zhǎng)線上;接著將所得多邊形以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)一個(gè)角度θ,這種經(jīng)過(guò)和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點(diǎn)O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
          (1)填空:
          ①如圖1,將△ABC以點(diǎn)A為旋轉(zhuǎn)相似中心,放大為原來(lái)的2倍,再逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,這個(gè)旋轉(zhuǎn)相似變換記為A(
           
           
          );
          ②如圖2,△ABC是邊長(zhǎng)為1cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
          3
          ,90°),得到△ADE,則線段BD的長(zhǎng)為
           
          cm;
          (2)如圖3,分別以銳角三角形ABC的三邊AB,BC,CA為邊向外作正方形ADEB,BFGC,CHIA,點(diǎn)O1,O2,O3分別是這三個(gè)正方形的對(duì)角線交點(diǎn),試分別利用△AO1O3與△ABI,△CIB與△CAO2之間的關(guān)系,運(yùn)用旋轉(zhuǎn)相似變換的知識(shí)說(shuō)明線段O1O3與AO2之間的關(guān)系.精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          6、如圖,填空:(填SSS、SAS、ASA或AAS)
          (1)已知BD=CE,CD=BE,利用
          SSS
          可以判定△BCD≌△CBE;
          (2)已知AD=AE,∠ADB=∠AEC,利用
          ASA
          可以判定△ABD≌△ACE;
          (3)已知OE=OD,OB=OC,利用
          SAS
          可以判定△BOE≌△COD;
          (4)已知∠BEC=∠CDB,∠BCE=∠CBD,利用
          AAS
          可以判定△BCE≌△CBD;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•河池)如圖,在10×10的正方形網(wǎng)格中,△ABC的頂點(diǎn)和線段EF的端點(diǎn)都在邊長(zhǎng)為1的小正方形的頂點(diǎn)上.
          (1)填空:tanA=
          1
          2
          1
          2
          ,AC=
          2
          5
          2
          5
          (結(jié)果保留根號(hào));
          (2)請(qǐng)你在圖中找出一點(diǎn)D(僅一個(gè)點(diǎn)即可),連接DE、DF,使以D、E、F為頂點(diǎn)的三角形與△ABC全等,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為
          (其中n>0),點(diǎn)Bx軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿OABC的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為SSl的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

          【小題1】(1)結(jié)合以上信息及圖2填空:圖2中的m=        
          【小題2】(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
          【小題3】(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過(guò)OB兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
          ① 求此拋物線W的解析式;
          ② 若點(diǎn)Q在直線上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿(mǎn)足以B,
          P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市西城區(qū)九年級(jí)第一學(xué)期期末測(cè)試數(shù)學(xué)卷 題型:解答題

          已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為,
          (其中n>0),點(diǎn)Bx軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿OABC的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為SSl的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

          【小題1】(1)結(jié)合以上信息及圖2填空:圖2中的m=        
          【小題2】(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
          【小題3】(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過(guò)O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
          ① 求此拋物線W的解析式;
          ② 若點(diǎn)Q在直線上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿(mǎn)足以B,
          P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案