【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達B地后立即返回,如圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y甲(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)它們出發(fā) 小時時,離各自出發(fā)地的距離相等,求乙車離出發(fā)地的距離y乙(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.
【答案】
(1)解:當(dāng)0≤x≤3時,是正比例函數(shù),設(shè)為y=kx,
x=3時,y=300,代入解得k=100,所以y=100x;
當(dāng)3<x≤ 時,是一次函數(shù),設(shè)為y=kx+b,
代入兩點(3,300)、( ,0),得
解得 ,
所以y=540﹣80x.
綜合以上得甲車離出發(fā)地的距離y與行駛時間x之間的函數(shù)關(guān)系式 為:y= .
(2)解:當(dāng)x= 時,y甲=540﹣80×
=180;
乙車過點( ,180),y乙=40x.(0≤x≤
)
(3)解:由題意有兩次相遇.
①當(dāng)0≤x≤3,100x+40x=300,解得x= ;
②當(dāng)3<x≤ 時,(540﹣80x)+40x=300,解得x=6.
綜上所述,兩車第一次相遇時間為第 小時,第二次相遇時間為第6小時.
【解析】(1)由圖知,該函數(shù)關(guān)系在不同的時間里表現(xiàn)成不同的關(guān)系,需分段表達.當(dāng)行駛時間小于3時是正比例函數(shù);當(dāng)行使時間大于3小時小于 小時是一次函數(shù).可根據(jù)待定系數(shù)法列方程,求函數(shù)關(guān)系式.(2)4.5小時大于3小時,代入一次函數(shù)關(guān)系式,計算出乙車在用了
小時行使的距離.從圖象可看出求乙車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間是正比例函數(shù)關(guān)系,用待定系數(shù)法可求解.(3)兩者相向而行,相遇時甲、乙兩車行使的距離之和為300千米,列出方程解答,由題意有兩次相遇.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點 A的坐標(biāo)是(-1,2) .作點A關(guān)于x 軸的對稱點,得到點A1 ,再將點A1 向下平移 4個單位,得到點A2 ,則點A2 的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
的頂點
,
的坐標(biāo)分別是
,
,動點
在直線
上運動,以點
為圓心,
長為半徑的
隨點
運動,當(dāng)
與四邊形
的邊相切時,
點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)是(2,﹣3),作點A關(guān)于x軸的對稱點,得到點A′,再作點A′關(guān)于y軸的對稱點,得到點A″,則點A″的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若□·3xy=27x3y4 , 則□內(nèi)應(yīng)填的單項式是( )
A.3x3y4B.9x2y2C.3x2y3D.9x2y3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com