日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線ABCD相交于OOE是∠AOC的平分線,OFCDOGOE,∠BOD=52°

          1)求∠AOC,∠AOF的度數(shù);

          2)求∠EOF與∠BOG是否相等?請(qǐng)說明理由.

          【答案】1)∠AOC=52°,∠AOF=38°;(2)相等,理由見解析.

          【解析】

          1)直接利用垂直的定義結(jié)合對(duì)頂角的定義得出∠AOC,∠AOF的度數(shù);

          2)分別求出∠EOF與∠BOG的度數(shù)進(jìn)而得出答案.

          1)∵OFCD,

          ∴∠COF=90°

          又∵∠AOC與∠BOD是對(duì)頂角,

          ∴∠AOC=BOD=52°,

          ∴∠AOF=COF-AOC=90°-52°=38°;

          2)相等,

          理由:∵∠AOC與∠BOD是對(duì)頂角,

          ∴∠AOC=BOD=52°,

          OE是∠AOC的平分線,

          ∴∠AOE=AOC=26°,

          又∵OGOE,

          ∴∠EOG=90°

          ∴∠BOG=180°-AOE-EOG=64°,

          ∵∠EOF=AOF+AOE=38°+26°=64°

          ∴∠EOF=BOG

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將平行四邊形ABCD沿EF對(duì)折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°AD=6,AB=12,則AE的長(zhǎng)為_______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)電子跳蚤從數(shù)軸的原點(diǎn)出發(fā),連續(xù)不斷地一左一右來回跳動(dòng)(第一次向左跳),跳動(dòng)的距離依次為,,

          1)如果是正整數(shù),那么第次跳動(dòng)的距離是______

          2)第次跳動(dòng)的落點(diǎn)位置所對(duì)應(yīng)的有理數(shù)是______;

          3)第次跳動(dòng)后所處位置在原點(diǎn)的______側(cè);

          4)①相對(duì)于出發(fā)點(diǎn),電子跳蚤第一次跳記作(向左跳),第二次跳記作(向右跳),以此類推,如果是正整數(shù),那么第次記作______;

          ②會(huì)不會(huì)有相鄰兩次跳動(dòng)的落點(diǎn)位置在原點(diǎn)的同側(cè)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形ABCD,點(diǎn)A(1,1),B(3,1)C(3,2)反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)D,且與AB相交于點(diǎn)E,

          1求反比例函數(shù)的解析式;

          2過點(diǎn)C、E作直線求直線CE的解析式;

          3如圖2將矩形ABCD沿直線CE平移,使得點(diǎn)C與點(diǎn)E重合求線段BD掃過的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過P作PEAB于E,連接PQ交AB于D.

          (1)當(dāng)BQD=30°時(shí),求AP的長(zhǎng);

          (2)當(dāng)運(yùn)動(dòng)過程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,AB=AC,以AB為直徑的OBC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)DDFAC于點(diǎn)F

          1)試說明DFO的切線;

          2)若AC=3AE,求tanC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)O為直線AB上一點(diǎn),將直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,并在∠MON內(nèi)部作射線OC

          1)將三角板放置到如圖所示位置,使OC恰好平分∠MOB,且∠BON2NOC,求∠AOM的度數(shù);

          2)若仍將三角板按照如圖所示的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,ABC為等腰直角三角形,ACB=90,FAC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)FA. C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.

          (1)猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;

          (2)將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)任意角度α,得到如圖2的情形。圖2BFAC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷(1)中得到的結(jié)論是否仍然成立,并證明你的判斷。

          (3)將原題中的等腰直角三角形ABC改為直角三角形ABC,ACB=90,正方形CDEF改為矩形CDEF,如圖3,AC=4,BC=3,CD=,CF=1,BFAC于點(diǎn)H,AD于點(diǎn)O,連接BD、AF,BD2+AF2的值。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,小娟玩游戲:一張紙片,第一次將其撕成四個(gè)正方形片,手中共有4張紙片,以后每次都將其中一片撕成更小的四個(gè)正方形片.如此進(jìn)行下去,根據(jù)上述情況:

          1)當(dāng)撕10次時(shí),小娟手中共有   張紙;

          2)當(dāng)小娟撕到第n次時(shí),手中共有S張紙片,請(qǐng)用含n的代數(shù)式表示S;

          3)小娟手中能否有2020張紙片?如果能,請(qǐng)算出是第幾次撕;如果不能,需說明理由.

          4)如果設(shè)原正方形的邊長(zhǎng)為1,通過不斷地分割該面積為1的正方形,并把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,可以很容易得到一些計(jì)算結(jié)果,請(qǐng)結(jié)合上圖計(jì)算

          查看答案和解析>>

          同步練習(xí)冊(cè)答案