日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC內(nèi)接于⊙O,若∠OBC=25°,則∠A的度數(shù)是________.

          65°
          分析:先根據(jù)題意畫出圖形,由OB=OC,得∠OCB=∠OBC,而∠OBC=25°,得到∠OCB=∠OBC=25°,因此∠COB=180°-25°-25°=130°,由圓周角定理得到∠A=∠COB.
          解答:解:∵OB=OC,∠OBC=25°,
          ∴∠OCB=∠OBC=25°,
          ∴∠COB=180°-25°-25°=130°,
          ∴∠A=∠COB=×130°=65°.
          故答案為:65°.
          點評:本題考查了圓周角定理.在同圓或等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.也考查了等腰三角形的性質(zhì)和三角形的內(nèi)角和定理.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,D是⊙O上一點,連接BD、CD、AC、BD交于點E.
          (1)請找出圖中的相似三角形,并加以證明;
          (2)若∠D=45°,BC=2,求⊙O的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC內(nèi)接于⊙O,AB=BC=4cm,AO⊥BC于D,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向精英家教網(wǎng)終點C運動,速度為1cm/s;點Q沿CA向終點A運動,速度為2cm/s,設(shè)它們運動的時間為x(s).
          (1)求證:△ABC為等邊三角形;
          (2)當(dāng)x為何值時,PQ⊥AC;
          (3)當(dāng)PQ經(jīng)過圓心O時,求△PQD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          15、已知△ABC內(nèi)接于⊙O,AD,BD為⊙O的切線,作DE∥BC,交AC于E,連EO并延長交BC于F,求證:BF=FC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•樊城區(qū)模擬)如圖,已知△ABC內(nèi)接于⊙O,弦AD交BC于E,過點D的切線MN交直線AB于M,交直線AC于N.
          (1)求證:AE•DE=BE•CE;
          (2)連接DB,CD,若MN∥BC,試探究BD與CD的數(shù)量關(guān)系;
          (3)在(2)的條件下,已知AB=6,AN=15,求AD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•永州)如圖,已知△ABC內(nèi)接于⊙O,BC是⊙O的直徑,MN與⊙O相切,切點為A,若∠MAB=30°,則∠B=
          60
          60
          度.

          查看答案和解析>>

          同步練習(xí)冊答案