日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

          (1)求這個(gè)二次函數(shù)的解析式;
          (2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo).

          【答案】
          (1)解:如圖,∵二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于原點(diǎn)0=O,

          ∴k+1=0,

          解得,k=﹣1,

          故該二次函數(shù)的解析式是:y=x2﹣3x


          (2)解:∵△AOB是銳角三角形,∴點(diǎn)B在第四象限.

          設(shè)B(x,y)(x>1.5,y<0).

          令x2﹣3x=0,即(x﹣3)x=0,

          解得x=3或x=0,

          則點(diǎn)A(3,0),故OA=3.

          ∵銳角△AOB的面積等于3.

          OA|y|=3,即 ×3|y|=3,

          解得,y=﹣2.

          又∵點(diǎn)B在二次函數(shù)圖象上,

          ∴﹣2=x2﹣3x,

          解得x=2或x=1(舍去).

          故點(diǎn)B的坐標(biāo)是(2,﹣2)


          【解析】(1)把(0,0)代入已知函數(shù)解析式即可求得k的值;(2)利用面積法求得點(diǎn)B的縱坐標(biāo),然后由二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征來(lái)求點(diǎn)B的橫坐標(biāo)即可.
          【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)和拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小;一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,連接對(duì)角線AC、BD,將△ABC沿BC方向平移,使點(diǎn)B移到點(diǎn)C,得到△DCE.
          (1)求證:△ACD≌△EDC;
          (2)請(qǐng)?zhí)骄俊鰾DE的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y= (x>0)的圖象與直線y=x﹣2交于點(diǎn)A(3,m).
          (1)求k、m的值;
          (2)已知點(diǎn)P(n,n)(n>0),過(guò)點(diǎn)P作平行于x軸的直線,交直線y=x﹣2于點(diǎn)M,過(guò)點(diǎn)P作平行于y軸的直線,交函數(shù)y= (x>0)的圖象于點(diǎn)N. ①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;
          ②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,多邊形的各頂點(diǎn)都在方格紙的格點(diǎn)(橫豎格子線的交錯(cuò)點(diǎn))上,這樣的多邊形稱為格點(diǎn)多邊形,它的面積S可用公式S=a+ b﹣1(a是多邊形內(nèi)的格點(diǎn)數(shù),b是多邊形邊界上的格點(diǎn)數(shù))計(jì)算,這個(gè)公式稱為“皮克定理”.現(xiàn)用一張方格紙共有200個(gè)格點(diǎn),畫(huà)有一個(gè)格點(diǎn)多邊形,它的面積S=40.

          (1)這個(gè)格點(diǎn)多邊形邊界上的格點(diǎn)數(shù)b=(用含a的代數(shù)式表示).
          (2)設(shè)該格點(diǎn)多邊形外的格點(diǎn)數(shù)為c,則c﹣a=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.

          (1)求∠BPQ的度數(shù);
          (2)求該電線桿PQ的高度(結(jié)果精確到1m).
          備用數(shù)據(jù): ,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AC、BD為圓O的兩條互相垂直的直徑,動(dòng)點(diǎn)P從圓心O出發(fā),沿O→C→D→O的路線作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,∠APB的度數(shù)為y度,那么表示y與t之間函數(shù)關(guān)系的圖象大致為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解答題
          (1)作△ABC的外接圓;
          (2)若AC=BC,AB=8,C到AB的距離是2,求△ABC的外接圓半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,在梯形ABCD中,AD∥BC,點(diǎn)E在邊AD上,CE與BD相交于點(diǎn)F,AD=4,AB=5,BC=BD=6,DE=3.

          (1)求證:△DFE∽△DAB;
          (2)求線段CF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
          (1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
          (2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案