日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•黑河)已知:在△ABC中,BC>AC,動點D繞△ABC的頂點A逆時針旋轉(zhuǎn),且AD=BC,連接DC.過AB、DC的中點E、F作直線,直線EF與直線AD、BC分別相交于點M、N.
          (1)如圖1,當(dāng)點D旋轉(zhuǎn)到BC的延長線上時,點N恰好與點F重合,取AC的中點H,連接HE、HF,根據(jù)三角形中位線定理和平行線的性質(zhì),可得結(jié)論∠AMF=∠BNE(不需證明);
          (2)當(dāng)點D旋轉(zhuǎn)到圖2或圖3中的位置時,∠AMF與∠BNE有何數(shù)量關(guān)系?請分別寫出猜想,并任選一種情況證明.

          【答案】分析:兩題思路基本相同,都需要作出兩條輔助線,兩次運用中位線定理解答.
          解答:解:圖1:∠AMF=∠ENB;
          圖2:∠AMF=∠ENB;
          圖3:∠AMF+∠ENB=180°.

          證明:如圖2,取AC的中點H,連接HE、HF.
          ∵F是DC的中點,H是AC的中點,
          ∴HF∥AD,HF=AD,
          ∴∠AMF=∠HFE,
          同理,HE∥CB,HE=CB,
          ∴∠ENB=∠HEF.
          ∵AD=BC,
          ∴HF=HE,
          ∴∠HEF=∠HFE,
          ∴∠ENB=∠AMF.

          如圖3:取AC的中點H,連接HE、HF.
          ∵F是DC的中點,H是AC的中點,
          ∴HF∥AD,HF=AD,
          ∴∠AMF+∠HFE=180°,
          同理,HE∥CB,HE=CB,
          ∴∠ENB=∠HEF.
          ∵AD=BC,
          ∴HF=HE,
          ∴∠HEF=∠HFE,
          ∴∠AMF+∠ENB=180°.
          點評:此題構(gòu)思巧妙,融合了中位線定理,平行線的性質(zhì)等概念,難點是需要作出兩條輔助線.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

          (2009•黑河)已知:在△ABC中,BC>AC,動點D繞△ABC的頂點A逆時針旋轉(zhuǎn),且AD=BC,連接DC.過AB、DC的中點E、F作直線,直線EF與直線AD、BC分別相交于點M、N.
          (1)如圖1,當(dāng)點D旋轉(zhuǎn)到BC的延長線上時,點N恰好與點F重合,取AC的中點H,連接HE、HF,根據(jù)三角形中位線定理和平行線的性質(zhì),可得結(jié)論∠AMF=∠BNE(不需證明);
          (2)當(dāng)點D旋轉(zhuǎn)到圖2或圖3中的位置時,∠AMF與∠BNE有何數(shù)量關(guān)系?請分別寫出猜想,并任選一種情況證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

          (2009•黑河)已知相切兩圓的半徑分別為5cm和4cm,這兩個圓的圓心距是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(03)(解析版) 題型:解答題

          (2009•黑河)已知:在△ABC中,BC>AC,動點D繞△ABC的頂點A逆時針旋轉(zhuǎn),且AD=BC,連接DC.過AB、DC的中點E、F作直線,直線EF與直線AD、BC分別相交于點M、N.
          (1)如圖1,當(dāng)點D旋轉(zhuǎn)到BC的延長線上時,點N恰好與點F重合,取AC的中點H,連接HE、HF,根據(jù)三角形中位線定理和平行線的性質(zhì),可得結(jié)論∠AMF=∠BNE(不需證明);
          (2)當(dāng)點D旋轉(zhuǎn)到圖2或圖3中的位置時,∠AMF與∠BNE有何數(shù)量關(guān)系?請分別寫出猜想,并任選一種情況證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年黑龍江省大興安嶺地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•黑河)已知:在△ABC中,BC>AC,動點D繞△ABC的頂點A逆時針旋轉(zhuǎn),且AD=BC,連接DC.過AB、DC的中點E、F作直線,直線EF與直線AD、BC分別相交于點M、N.
          (1)如圖1,當(dāng)點D旋轉(zhuǎn)到BC的延長線上時,點N恰好與點F重合,取AC的中點H,連接HE、HF,根據(jù)三角形中位線定理和平行線的性質(zhì),可得結(jié)論∠AMF=∠BNE(不需證明);
          (2)當(dāng)點D旋轉(zhuǎn)到圖2或圖3中的位置時,∠AMF與∠BNE有何數(shù)量關(guān)系?請分別寫出猜想,并任選一種情況證明.

          查看答案和解析>>

          同步練習(xí)冊答案