日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線段DA的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

          (1)當(dāng)t=2時(shí),求△BPQ的面積;

          (2)若四邊形ABQP為平行四邊形,求運(yùn)動(dòng)時(shí)間t.

          (3)當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?

           

          【答案】

          (1)84(2)5(3)

          【解析】⑴ BQ=16-2=14  ∴ (2分)

          (2)只須AP=BQ即  解得 t=5 (2分)

          (3)下面分三種情況討論:(6分)

          ①以∠B為頂角時(shí),BP=BQ,有:

           ,,∵△<0 ∴無(wú)解

          ②以∠Q為頂角時(shí),QB=QP,有:

           解得  

          ③以∠P為頂角時(shí),PB=PQ,有:

            解得  

          綜上,時(shí),符合題意

          ⑴求得BQ的長(zhǎng),再根據(jù)三角形的面積求得

          ⑵只須AP=BQ,列方程全等

          ⑶若以B、P、Q三頂為頂點(diǎn)的三角形是等腰三角形,可以分三種情況:第一種:PQ=BQ;第二種:BP=BQ;第三種:若PB=PQ.根據(jù)勾股定理可求得,B、P、Q三點(diǎn)為頂點(diǎn)三角形是等腰三角形.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
          (1)求證:AE=DF;
          (2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
          (3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案