日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,長方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖:
          第一步:如圖①,在線段AD上任意取一點E,沿EB,EC剪下一個三角形紙片EBC(余下部分不再使用);
          第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;
          第三步:如圖③,將MN左側(cè)紙片繞G點按順時針方向旋轉(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點按逆時針方向旋轉(zhuǎn)180°,使線段HC與HE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片.
          (注:裁剪和拼圖過程均無縫且不重疊)
          則拼成的這個四邊形紙片的周長的最小值為cm,最大值為cm.

          【答案】20;12+
          【解析】解:畫出第三步剪拼之后的四邊形M1N1N2M2的示意圖,如答圖1所示.
          圖中,N1N2=EN1+EN2=NB+NC=BC,
          M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位線定理),
          又∵M1M2∥N1N2 , ∴四邊形M1N1N2M2是一個平行四邊形,
          其周長為2N1N2+2M1N1=2BC+2MN.
          ∵BC=6為定值,∴四邊形的周長取決于MN的大小.
          如答圖2所示,是剪拼之前的完整示意圖.

          過G、H點作BC邊的平行線,分別交AB、CD于P點、Q點,則四邊形PBCQ是一個矩形,這個矩形是矩形ABCD的一半.
          ∵M是線段GH上的任意一點,N是線段BC上的任意一點,
          根據(jù)垂線段最短,得到MN的最小值為PQ與BC平行線之間的距離,即MN最小值為4;
          而MN的最大值等于矩形對角線的長度,即 = =
          ∵四邊形M1N1N2M2的周長=2BC+2MN=12+2MN,
          ∴四邊形M1N1N2M2周長的最小值為12+2×4=20,
          最大值為12+2× =12+
          所以答案是:20,12+
          【考點精析】掌握三角形中位線定理和矩形的性質(zhì)是解答本題的根本,需要知道連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;矩形的四個角都是直角,矩形的對角線相等.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知反比例函數(shù) 的圖象,當x取1,2,3,…,n時,對應(yīng)在反比例圖象上的點分別為M1 , M2 , M3…,Mn , 則 =

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某工廠用如圖甲所示的長方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長方體形狀的無蓋紙盒

          1)現(xiàn)有正方形紙板162張,長方形紙板340張.若要做兩種紙盒共100個,設(shè)做豎式紙盒x個.

          ①根據(jù)題意,完成以下表格:

          紙盒

          紙板

          豎式紙盒(個)

          橫式紙盒(個)

          x

          100﹣x

          正方形紙板(張)

          2100﹣x

          長方形紙板(張)

          4x

          ②按兩種紙盒的生產(chǎn)個數(shù)來分,有哪幾種生產(chǎn)方案?

          2)若有正方形紙162張,長方形紙板a張,做成上述兩種紙盒,紙板恰好用完.已知290a306.求a的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】
          (1)計算:
          (2)解不等式組:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,在正方形ABCD中,GCD上一點,延長BCE,使CE=CG,連接BG并延長交DEF.

          (1)求證:△BCG≌△DCE;

          (2)將△DCE繞點D順時針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.
          (1)求證:KE=GE;
          (2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說明理由;
          (3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,若正方形EFGH由正方形ABCD繞某點旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是(
          A.M或O或N
          B.E或O或C
          C.E或O或N
          D.M或O或C

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知反比例函數(shù)y= (x>0)的圖象與一次函 數(shù)y=﹣x+b的圖象分別交于A(1,3)、B兩點.

          (1)求m、b的值;
          (2)若點M是反比例函數(shù)圖象上的一動點,直線MC⊥x軸于C,交直線AB于點N,MD⊥y軸于D,NE⊥y軸于E,設(shè)四邊形MDOC、NEOC的面積分別為S1、S2 , S=S2﹣S1 , 求S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。

          (1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?

          (2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由

          查看答案和解析>>

          同步練習冊答案